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Introduction 
 

VMCrypt is a Java software library. It provides secure computation capabilities to Java applications. All the needed modules, 

including client-server modules, encryption modules, and oblivious transfer protocols, are included. VMCrypt can be easily 

integrated into existing projects. Moreover, all modules are customizable, and in fact they can be used to implement 

applications outside the realm of cryptography, such as generic client-server protocols. VMCrypt is based on Yao’s garbled 

circuit technique. For scientific background on this technique and software architecture of VMCrypt, see the paper VMCrypt - 

Modular Software Architecture for Scalable Secure Computation,2010 by Lior Malka and Jonathan Katz (available from ePrint: 

http://eprint.iacr.org/2010/584.pdf). 

 

About this manual 
 

The goal of this manual is to make VMCrypt integration as easy as possible to developers. The manual shows how to set up 

VMCrypt and run the sample applications included. Knowledge of cryptography is not necessary to run the examples, although 

it is needed to understand the underlying algorithms. Basic Java skills are required. The most technical topic in VMCrypt is 

component creation, which we do not cover here, but see the paper mentioned above: VMCrypt - Modular Software 

Architecture for Scalable Secure Computation. To automatically generate the documentation for VMCrypt, see the appendix. 

The revision history is also in the appendix. 

 

Disclaimer 
 

VMCrypt is free software. It is distributed on an "AS IS" basis, without warranty of any kind, either express or implied. See the 

License included with the source files for the specific language governing rights and limitations. Some countries impose export 

or trade restrictions on cryptographic technology. Some or all of the technologies used in VMCrypt may be protected by 

intellectual property laws. Other restrictions may apply. This manual should not be seen as a solicitation to use VMCrypt. 



VMCrypt V 1.4|All Rights Reserved, Lior Malka, 2010|Updated April 4, 2011 3 

 

Setting up the development environment 
 

Everything in this manual is written assuming you are using Linux. You may want to consider installing one of the Linux 

distributions, like Ubuntu, as the installation process is very simple and the user interface is almost identical to that of 

Windows. In any case, the principles given here equally apply to Windows. The version of your operating system does not 

matter. You will need a PC with text editor and Java installed. If you are not sure whether you have Java installed, open a 

command line interface (also known as shell or terminal window) and execute “javac” (the Java compiler) and “java” (the Java 

Virtual Machine). If one of these commands is not found, then you need to install Java. In Linux, you can install the entire Java 

Software Development Kit (SDK) by typing from the shell: 

 

sudo apt-get install java6-sdk 

 

Next, you will need to obtain two files: samples.jar and VMCrypt.jar. The first file contains the source code of the VMCrypt 

samples, and you will need to extract it. The second file contains the VMCrypt source code. If you only want to run the samples, 

then you do not have to extract it. However, in this manual we will show how to control some flags in the source, so you will 

have to extract this file too. The following instructions show how to extract the files. In this example, the home directory is 

/home/Lior, and there is a Documents subdirectory where the files samples.jar and VMCrypt.jar are stored: 

  

lior@ubuntu:~$ cd Documents 

 

lior@ubuntu:~/Documents$ jar xf VMCrypt.jar 

 

lior@ubuntu:~/Documents$ jar xf samples.jar 

 

If all went well, you should see two new directories (VMCrypt and samples) created inside the directory Documents. You can 

safely erase META-INF if such directory was created. You can list the contents of the subdirectory in Linux by executing 

 

lior@ubuntu:~/Documents$ ls –la 

 

We remark that you do not have to store VMCrypt under /Documents (which is under your home directory), but if you choose a 

different directory, then modify the path defined in the file Makefile.inc1 found in VMCrypt/makeInc. The last step is to set the 

Java class path so that Java files can be located when you compile or run your Java programs. There are several ways to go 

about it, but in this manual we will simply set the CLASSPATH environment variable. This can be done by executing: 

 
export CLASSPATH=/home/lior/Documents:. 

 

Several remarks are in place. Firstly, notice that no extra space is allowed around the “=” symbol. Secondly, notice that the 

“export” command will only set the CLASSPATH variable in the shell where it was executed. In other words, the variable is not 

system wide and does not affect other shells. Hence, when you open a new shell, which you will do when you run a client and a 

server, you will need to repeat this step in the new shell. Thirdly, the “:” symbol is a separator between paths. In this case we 

have two directories in the class path: the Documents directory and the local (“.”) directory. The reason for this setup is that we 

will always execute java or javac from one of the sub directories of sample, and therefore we would like the path to include the 

local directory, as well as the root path to the VMCrypt package.  

 

If your CLASSPATH is not set correctly, then when executing java on file name XXXXXX you may get an error like 

 
Exception in thread "main" java.lang.NoClassDefFoundError: XXXXXX 

 

and when executing javac on file name XXXXXX you may get an error like 

 

XXXXXX.java:24: cannot find symbol 

symbol  : class YYYYYY 

location: class XXXXXX 

 

If you see one of these error messages, then you need to set CLASSPATH correctly. Move on only after you fix this issue. 
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Example 1 – Computing a circuit 
 

Like all the examples in this manual, this one assumes that you have set up your Linux environment as described earlier. We will 

start with the easiest thing in VMCrypt: computing a circuit. In VMCrypt, circuits are derived from abstract class Component, so 

from now on we just use the notion of a component whenever we refer to a circuit. Notice that there is no secure computation 

at this stage. We simply take a component, which is a representation of a piece of hardware (that is, gates and wires), feed it 

with input bits, and display to the screen the bits coming out of the output wires of the component. Let us start. Go to the 

samples/component directory and execute make: 

 
lior@ubuntu:~/Documents/samples/component$ make 

 

The make utility is part of Linux. It takes a file called makefile as input, and executes instructions based on this file. In this case 

the instructions are to compile the TestComponents.java and Main.java files. Once the .java files have been compiled, you will 

see that corresponding .class files have been generated for them. You are ready to run your first VMCrypt application! Execute: 

 
lior@ubuntu:~/Documents/samples/component$ java Main 

 

On the shell screen you will see a list of input-output pairs from three different components. Inputs and outputs are displayed 

at their bit representations. For example, the output  

 

___ Testing BitADD on 2^3 inputs. Effective outDegree = 2 ___ 

Input 000 Output 00 

Input 100 Output 01 

Input 010 Output 01 

Input 110 Output 10 

Input 001 Output 01 

Input 101 Output 10 

Input 011 Output 10 

Input 111 Output 11 

 

Means that a component called BitADD is being computed. The inputs range from 000 to 111. These three bits include two 

input bits and a third carry bit. The output bits include one sum bit and one carry bit. If you open the TestComponents.java file, 

you will see that only one of many suite of tests are executed. Other tests have been commented out so that you do not get 

overwhelmed with the output.  

 

Our next step in this example is to understand how the component is being computed. We only give a high level description. As 

you can see in TestComponents.java, the VMCrypt class TestModule receives the component. This class is from VMCrypt.util, 

which means that it is located in the VMCrypt/util directory. TestModule creates two objects from VMCrypt classes called 

StandardInput and StandardOutput. At each iteration, TestModule proceeds to the next input by invoking the next() method of 

StandardInput. It then passes the component, the StandardInput, and the StandardOutput to a class called CalculateNotifier 

(from VMCrypt.function). CalculateNotifier runs over the bit sequence from StandardInput, and for each bit in this sequence it 

notifies the corresponding input wire of the component. More accurately, it notifies the component, which then forwards the 

notification to the wire. The bit value (0 or 1) is not the only thing passed to the component. Other parameters include the 

function, which, in this case, is the Calculate function. When a gate has two inputs ready, it passes these inputs to Calculate, 

which computes the function represented by the gate, and returns the output to the gate. The gate notifies its output wire, and 

the process continues until StandardOutput is notified. 

 

It is very hard to imagine how signals pass in a component. In fact, signals pass not only through gates and wires, but also 

through other objects, such as a Bus, a Buffer and the PTable. To help developers trace signals in components, VMCrypt 

provides a special class: the Monitor. Many VMCrypt classes report to the monitor about their events. For example, class Gate 

reports about gate build, gate notification, and gate destruction. To turn the monitor on, open Monitor.java (from 

VMCrypt.util) and check that the MONITOR variable is set to true. You will notice that the qualifier of MONITOR is static final 

public. All VMCrypt classes use this variable to decide whether they need to report or not. The fact that the variable is final 

means that its value cannot be changed after compilation. It is hard wired into the code. Thus, if we compile, for example, class 

Gate when MONITOR is false, then Gate will not send notifications, and even if we change MONITOR to true and recompile 

class Monitor, still class Gate will not send notifications. The lesson is: whenever you change the value of MONITOR, you need 

to rebuild the entire code. This can be done by executing from the VMCrypt directory: 
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lior@ubuntu:~/Documents/VMCrypt$ make again 

 

“make again” first calls “make clean” (which removes all .class files) and then “make” to recompile all the .java files. You can 

run “make”, “make again” or “make clean” from any VMCrypt subdirectory, and they will apply recursively to the subdirectories 

rooted at that directory. Back to class Monitor, notice that all events are reported to this class, but not all are displayed. In this 

example we want to see all events, so in class Monitor you should find array componentEvents and uncomment all the events 

so that they are included. Also make sure that the following variables are set:  

 

� COMPONENT_EVENT_FILTERING_IS_ON = true  

� COMPONENT_EVENT_FILTERING_IS_INCLUSIVE = true 

 

You do not need to understand what these variables do at this stage, but the Monitor class is extremely simple, so you can later 

return to this file to learn how to control all the notifications. This will be very handy when debugging new components. When 

you change the value of these variables, you do not need to build the entire code again. All you need is to recompile 

Monitor.java. Remember - you can execute make from any subdirectory of VMCrypt, and it will compile all the files that have 

been modified under the hierarchy rooted at this subdirectory. So, to compile Monitor.java you can simply execute make from 

/Documents/VMCrypt.  

 

Finally, before you rerun the test, open the file TestComponents.java mentioned earlier (located at samples/component) and in 

the method start() make sure that all tests except for test1() are commented out. Also, to make sure that test1() computes only 

one component, say the BitMUX (bit multiplexer), comment out the last two lines of test1() as shown below: 

 

void test1() { 

test(new BitMUX(bus)); 

 //test(new BitCMP(bus)); 

 //test(new BitADD(bus)); 

} 

 

Since you modified TestComponents.java, execute make to recompile and then run Main.java: 

 

lior@ubuntu:~/Documents/samples/component$ make 

 

lior@ubuntu:~/Documents/samples/component$ java Main 

 

You will see that this time the output is much more verbose. This is because many objects are reporting to the Monitor. Notice 

that the BitMUX component has been computed on all possible inputs. Thus, you are actually looking at 8 computations. The 

reports sent to the Monitor can be roughly divided into two groups: 

 

� Notifications: when an object reports about receiving or sending a value. 

� Memory: when an object is constructed or destructed. 

 

Notice that protocols also have their own set of events, which are useful for tracking protocol progress and obtaining protocol 

statistics. Back to our example, the output on your screen will look like this: 

 
PTable initializes row 0 of size 2 

PTable[0][0] sets object=0 

PTable[0][0] sets object=1 

___ Testing BitMUX on 2^3 inputs. Effective outDegree = 1 ___ 

(0,0) BitMUX is object-notified on port 0 with 0 

(0,0) BitMUX Buffer of size 3 is constructed  

(0,0) BitMUX Buffer is notified at port 0 with 0 

(0,0) BitMUX is object-notified on port 1 with 0 

(0,0) BitMUX Buffer is notified at port 1 with 0 

(0,0) BitMUX is object-notified on port 2 with 0 

(0,0) BitMUX Buffer is notified at port 2 with 0 

(0,0) BitMUX is built. InDegree=3, OutDegree=1 

XOR gate is built. 

XOR gate is built. 

AND gate is built. 

(1,2) AND gate is notified on port 1 with value 0 

(1,0) XOR gate is notified on port 1 with value 0 

(0,0) BitMUX destucts Buffer of size 3 
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(1,0) XOR gate is notified on port 0 with value 0 

(1,0) XOR gate is destructed. 

(1,2) AND gate is notified on port 0 with value 0 

(1,2) AND gate is destructed. 

(1,1) XOR gate is notified on port 1 with value 0 

(1,1) XOR gate is notified on port 0 with value 0 

(1,1) XOR gate is destructed. 

(0,0) BitMUX is destructed. 

(0,0) BitMUX Bus forwards a notification to Standard Output on port 0 with value 0. Counter=0 

Standard Output received 0 on port 0 

Input 000 Output 0 

 

We explain the above transcript. Ignoring the PTable, the test begins with the test announcement: 
 

___ Testing BitMUX on 2^3 inputs. Effective outDegree = 1 ___ 

 

The announcement reports the name of the component being tested, followed by 2^3. The number 3 is the inDegree (input 

degree) of the BitMUX. The outDegree (output degree) is 1, and we will ignore the Effective outDegree for now. You can 

interpret the announcement as saying “this is a circuit with 3 input wires and 1 output wire, and we are going to feed it with all 

possible 2^3 inputs.” The component is a bit multiplexer: it takes a first and a second bit (denoted x and y), and based on the 

third bit (denoted c) it outputs either x or y. Here is a mathematical sketch of this circuit. The links represent wires, and the 

circles represent gates (either AND or XOR gates). 

 

 
 

When a component receives a notification, it routes it to the appropriate sub component. In this case, however, we have a 

Circuit component. More accurately, BitMUX extends class Circuit. Because circuits have a Buffer, only when all notifications to 

the BitMUX have been received does the buffer flush the notifications into the circuit. Flushing simply means that the buffer 

notifies each wire with the signal it was supposed to receive. 

 

Going back to the transcript, you can see that when the BitMUX is notified for the first time, it builds the buffer and notifies the 

buffer with the signal. Subsequently, each time BitMUX is notified, it notifies its buffer. You may have already guessed that port 

is the index on which notifications are received. In the case of circuits, when we say that BitMUX is notified on port 2 with 0, we 

mean that the value 0 is for wire number 2. However, remember that class Circuit is the only class with input wires, so for 

classes that do not have input wires we use the notion of a port to describe the destination of the signal. 

 

The pair (0,0) means that BitMUX is the 0-th component at depth 0. This means “the root component”. Inside the BitMUX there 

are three gates, so their depth is 1 higher, and they are numbered 0,1, and 2. For this reason they are described as (1,0), (1,1), 

and (1,2). The depth and the index are assigned automatically by VMCrypt. They are not used for any purpose other than 

reporting. Without them, you would not be able to follow signals travelling inside components, and you would not be able to 

control what events (e.g., from what depth) you would like the Monitor to display. 

 

Once the buffer receives notifications on all ports (that is, 0,1, and 2) it invokes the buildCircuit() method of the circuit. As you 

can see in the transcript above, this method creates the internal sub components. In this case, these are three gates. At the end 

of the build process, wires are constructed and connected. Finally, the buffer calls the notify_sub_component method of the 

circuit, which in the case of class Circuit simply passes the notification to the appropriate wire. Wires do not notify the monitor 
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when they receive signals because this would be redundant; as you can see each gate reports to the monitor that it has 

received a signal. Each gate self-destructs as soon as it is done computing and then it forwards its output on its output wire. 

 

Each VMCrypt component has a Bus. The bus has two functions. The first one is output. Specifically, the bus has an out variable 

referencing some notifiable object. This object is usually a component, but in this case it is StandardOutput. When a component 

wants to output a signal, the bus of this component is notified with this signal first. The bus then forwards the signal to the 

notifiable object referenced by out. In our example, the (1,1) XOR gate produces an output, this output flows on an output wire, 

the wire notifies the bus of the BitMUX, and then the bus notifies StandardOutput.  

 

The second function of the bus is to destruct the component in which it resides. Specifically, the bus has a counter, initially set 

to the outDegree of the component (in this case 1). Each signal leaving the bus decreases this counter. When the counter hits 0, 

before the bus forwards the notification, it calls the destruct() method of the component. This can be seen in the transcript 

above: BitMUX destructs first, and StandardOutput receives the notification second. Misusing the Bus can cause many 

unforeseen bugs (see the Appendix). 

 

We are done with this example. If you want to expand your learning, here are a few exercises: 

1. Open the file BitMUX.java  (located at VMCryp/primitive) and compare the content with the drawing shown above. 

2. In the file TestComponents.java uncomment other tests to see what they compute. 

3. In the file Monitor.java modify the set of displayable events. Also try filtering events by depth. 

4. In the file TestComponent.java, find the variable controlling the number of tests. Set its value to, say, 3. Run the tests. 

5. In the file TestComponent.java, add a new test method that computes the MUX component. Hint: your method 

should look exactly like test6(), except that instead of BinaryMin you need another class name. 
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Example 2 – Running a VMCrypt client-server application. 
 

VMCrypt provides a generic client and a server. In addition, VMCrypt provides special input/output streams that allow the client 

and the server to send data to each other. The Java SDK streams ObjectInputStream and ObjectOutputStream provide this 

functionality too, but at the extreme speeds at which VMCrypt protocols run, these streams will crash your machine after five 

seconds. Another useful property of VMCrypt streams is that they can report the amount of data sent and received. No Java 

stream provides this capability. Moreover, VMCrypt streams can maintain multiple counters, so that even if your client and 

server run several protocols, the amount of data sent by each protocol can be measured individually. The example in this 

section demonstrates the VMCrypt Client, the VMCrypt Server, and the VMCrypt streams. 

 

You will need to open two shells. In each shell you will need to set the CLASSPATH. If you are not sure how, then see the section 

on setting the development environment. Next, go to the directory samples/net and compile the java files: 

 

lior@ubuntu:~/Documents/samples/net$ javac *.java 

 

As shown above, we are assuming, as usual, that subdirectories VMCrypt and samples are stored under /home/lior/Documents. 

 

Now, from the first shell execute: 

 
lior@ubuntu:~/Documents/samples/net$ java ServerMain 

 

and from the other shell execute: 

 

lior@ubuntu:~/Documents/samples/net$ java ClientMain 

 

You should see some output on the screen, indicating that the client and the server are sending data to each other. Let us go 

through this example. Open the files ServerMain.java and ClientMain.java. You can see that the server simply creates an 

instance of ServerBody and starts it. The same applies to ClientMain. If you go to VMCrypt.net, you will see that Class 

ServerBody extends class VMCryptServer and that ClientBody extends VMCryptClient. Both VMCryptServer and VMCryptClient 

extend VMCryptParty, which owns the VMCrypt input and output streams. 

 

 

 

 

 

 

 

 

 

 

 

Did you notice that in ServerMain the server is strated using the method start(), but in ServerBody there is no such method? 

What actually happens is that, when you start a party (that is, a client or a server), there are some methods in class Party that 

handle setting up the network connection, and after they finish their job, they call the run() method, which is what 

implemented in ServerBody and ClientBody. 

 

Did you also notice that the stream variables in and out are defined in class Party, but they are overridden by the in and out 

variables in ServerBody and ClientBody? The stream variables in and out from ServerBody and ClientBody are instances of the 

special VMCrypt stream classes we talked about above. These classes are called CounterInputStream and 

CounterOutputStream, but the actual work they do is implemented by their super classes, ArraysInputStream and 

ArraysOutputStream, respectively. The stream classes can be found in VMCrypt.io. All VMCrypt protocols use these streams. 

They let VMCryptParty.start() initiate the communication channel (and connect VMCryptParty.in and VMCryptParty.out to the 

channel) and then they create instances of VMCrypt streams (and connect them to VMCryptParty.in and VMCryptParty.out). 

 

There are two important conclusions from the above discussion: 

1. If you want to create a client and a server from scratch, then extend VMCryptServer and VMCryptClient. 

2. You can use your existing client and server, but if you want to run VMCrypt Protocols, then you must use the special 

VMCrypt streams. You instantiate these streams just as shown in ServerBody (or ClientBody). 

VMCryptParty 

VMCryptClient VMCryptServer 

ServerBody ClientBody 

 
Part of the  

VMCrypt library 

Sample application 

(not part of the  

VMCrypt library) 
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We now look at the actual sending and receiving of messages. Looking at classes ServerBody and ClientBody you can see that 

writing to the streams is done by using out.XXXX where XXXX is the name of the method describing what is being sent. For 

example, in the run() method of ServerBody you can find the instruction out.write_Int(length); which sends an integer to the 

client. Similarly, reading from the stream is done using an instruction of the form in.XXXX, where XXXX is the name of the 

method describing what is being read. Again, if you look at the run() method of ServerBody you can find the line message2A = 

in.readArray(message2A, length); which reads a byte array from the network. Notice that “message2A=” implies that 

in.readArray returns a reference to the byte array. Why, then, do we also need to provide message2A as an argument to 

readArray? Because there are many readArray methods in ArrayInputSream, and they all read different arrays. When you pass 

message2A as an argument, you tell Java to invoke the readArray method that corresponds to a byte[] array, which is the type 

of message2A. 

 

The instruction out.flush() flushes the stream. You must use it after each sequence of write operations, or else the protocol 

would freeze because the other party is waiting for a message that will never arrive.  

 

We already mentioned that the VMCrypt streams are capable of counting the amount of data sent and received. You can see in 

the constructor of ServerBody that the counting unit is set to kilobyes by passing the constant Counter.Unit.kilobyte. This 

constant is actually implemented as a Java enum type, as you can see in class Counter in VMCrypt.util. You can set the counter 

unit to any measurement (e.g., megabyte), but notice that the Counter class has limited support for overflows (see the source). 

 

Finally, you may wonder what the instruction in.meta = ArraysInputStream.META._byte; from ServerBody.run() does. The 

answer is that, when arrays are sent over VMCrypt streams, the length of the array is written into the stream, just before the 

array itself it written. This is done so that the receiver knows how many bytes it should read from the network. The above 

instruction tells the input stream that the size of the integer describing the length of the array is one byte. Thus, if your 

application is sending millions of small arrays, then instead of attaching an integer to each of these arrays, you save on 

bandwidth by only attaching one byte. In fact, VMCrypt streams can send and receive data with no metadata at all. This can 

save a lot of time and bandwidth, but it also means that you need to know exactly how many bytes to read on the receiver end. 

Almost all VMCrypt messages are sent without metadata, and even control metadata is not used (that is, the client side and the 

server side in all of the VMCrypt protocols are synchronized by design). 

 

In our client-server example, the client is the party sending the last message. To test you understanding, try the following: 

 

1. Make the client send an array containing “hello world” to the server. 

2. Modify the server so that it displays this string in color other than green (see class Color in VMCrypt.util). 

3. Make the client send the array “hello world” with metadata of size int. 

4. Make the client send the array “hello world” without metadata (see classes ArraysOutputStream and 

ArraysInputStream).  

5. Make the parties communicate via a different port than the default one (see ClientBody and ServerBody). If you have 

a second computer, try running the client and the server from different computers. 

 

In the above exercise, make sure you modify both parties as necessary, and do not forget to flush the stream. 
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Example 3 – Running an Oblivious Transfer Protocol 
 

In this example we will run an Oblivious Transfer protocol (OT). Briefly, in such a protocol the server has a pair of messages, say 

<“secret1”,“secret2”>, and the client wants to learn exactly one of these messages, but without telling the server which one. 

Similarly, the server is willing to reveal exactly one of the secrets, but not both. Thus, at the end of an OT protocol, the client 

learns “secret1” or “secret2” (but not both), and the server does not learn anything. In particular, the server does not know 

which secret the client chose. 

 

To run this example, follow the same steps as in Example 2. That is, open two shells and define the CLASSPATH in each one of 

them. Then, go to the directory samples/OT and compile the java files. Finally, run ServerMain from one shell, and ClientMain 

from the other. The client displays messages it receives from the server, and the server does not display anything. 

 

We go through the code, starting with /samples/OT/ServerBody.java. In the run() method you will see that the server starts an 

OT server inside a loop. That is, the OT protocol is executed 5 times. The same loop appears in the run() method of the client, 

found in /samples/OT/ClientBody.java, except that after the client finishes each iteration, it displays its output on the screen. In 

each of the five executions, the server has arity=4096 pairs of messages. These are stored in an array m. The client has an array 

b of size 4096, and b[i]=0 or 1 depending on whether i is even or odd . The client uses the value of b[i] to choose between 

m[i][0] to m[i][1]. This choice is displayed on the screen. To test for correctness, we set the first cell of m[i][0] to 0, and the first 

cell of m[i][1] to 1. Thus, the first byte in the i-th message learned by the client should be b[i]. 

 

It is important not to confuse protocols with servers and clients. In the previous example we have used the body of the client 

and the server to send and receive messages. This was done only to simplify the presentation. If you open files 

/samples/OT/ServerBody.java  and /samples/OT/ClientBody.java, you will see that protocol logic is decoupled from the client 

and the server. This is how you should design protocols. In VMCrypt, all protocols derive from the base class Protocol (found in 

VMCrypt.protoco.base). If you plan on adding a new protocol called XXXX to VMCrypt, then create two classes (called 

XXXXServer and XXXXClient) that extend this class.  

 

In the case of oblivious transfer, the classes extending Protocol are OTClient and OTServer (found in VMCrypt.protocol.OT). 

Notice that these are abstract classes; the OT protocols that VMCrypt provides extend these classes. This means that if you 

want to integrate your own OT protocols into VMCrypt or create new ones, then you should extend these classes. For more 

details, see http://www.lior.ca/publications/api_design.pdf  (How to Design APIs for Cryptographic Protocols). 

 

 

 

 

 

 

 

 

 

 

 

The methods NPOT() and OTX() instantiate an OT protocol. Regardless of which type of protocol they instantiate, this protocol is 

started in the method run(). VMCrypt implements two OT protocols (see VMcrypt.protocol.OT): 

 

1. The Naor-Pinkas protocol [NP01], implemented in classes NPOTClient and NPOTServer. Since this protocol takes many 

parameters, we have created the class NPOTParams as a container for these parameters. The protocol generates a 

public key (which is not secret, as the name suggests) and store it in the file NPOTServer.public. If you erase the file, 

the protocol will regenerate it. We remark that the implementation of this protocol follows that of the original paper, 

so there is much room for improvement. 

2. The Ishai-Killian-Nissim-Petrank protocol [IKNP03], implemented in classes OTXClient and OTXServer. The “X” stands 

for “extension”. The reason for this “X” is that the [IKNP03] protocol actually extends other OT protocols. It does not 

stand on its own. In this protocol, the OTXServer runs an OT client as a sub protocol, and the OTXClient runs an OT 

server as a sub protocol. They run these underlying OT protocols 80 times to get an effective number of 4096 OT, 

hence the notion of extending 80 to 4096. The number 80, represented by the variable sub_OT_arity, is part of the 

security parameters. Do not decrease it. For more information regarding the security parameters see [IKNP03]. 
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Protocol 

OTXTClient OTXServer 
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Example 4 – Running a Garbled Circuit Protocol 
 

In this example we run a garbled circuit protocol. Following the same steps as in Example 2, open two shells and define the 

CLASSPATH in each one of them. Then, go to the directory samples/GC and run make to compile the java files. Finally, run 

ServerMain from one shell, and ClientMain from the other. If you see too many lines displayed on the screen, then this is 

probably due to uncommented component events in class Monitor that were previously commented. To fix this, open class 

Monitor in VMCrypt.util, comment all elements in the array componentEvents, and finally recompile by executing make from, 

e.g., the directory VMCrypt. We mention that having the Monitor turned on has a severe impact on performance, so if you are 

testing for performance, set MONITOR=false and rebuild (for details, see Example 1). 

 

During execution, the client and the server display status information on the screen. The index is the current wire on which 

wire-labels are available. The index is displayed in multiples of 10,000. If, e.g., the last index displayed is 40,000, then the 

component being garbled has between 40 to 50 thousand input wires. Notice that in VMCrypt wire locations are formally called 

ports. The number of the gate being garbled (alternatively, evaluated) is also displayed. You can remove it by opening the file 

Garble.java (alternatively, Eval.java) in VMCrypt.function, and commenting the appropriate line. 

 

Before we proceed, it is important to realize that, in VMCrypt, creating a component and running a GC protocol are two 

completely separate things. When you create a component, you first want to test it for functional correctness. For more 

information on how to create a component, see the paper VMCrypt - Modular Software Architecture for Scalable Secure 

Computation,2010 by Lior Malka and Jonathan Katz (available from ePrint: http://eprint.iacr.org/2010/584.pdf). The ability to 

create and debug components independently of the underlying protocols is a huge plus in terms of software development. 

 

The ServerBody and ClientBody from our example can run the GC protocol on three different components. In ServerBody.java 

from /samples/GC you can see that depending on which method is called, the instantiated component is as follows: 

1. testMIN() – the component is computing the minimum of a set of numbers. 

2. testDBSearch() – the component is doing a database search. 

3. testSetIntersection() – the component is computing the intersection between two sets. 

You can try running the GC protocol with other components. Just remember that when you modify ServerBody, you may also 

have to change ClientBody (this is the case if you want to test other components).  

 

From an algorithmic perspective, the class that orchestrates the garbling and evaluation process is Notifier from 

VMCrypt.protocol.WLTP. WLTP stands for Wire-Label Transport Protocol. The notifier drives the GC protocol. It obtains objects 

from the WLTP protocol and feeds these objects into the component. Specifically, in WLTPServer, which is the server side of the 

WLTP protocol, the notifier obtains pairs of wire-labels. It notifies the ports of the component with these pairs. In WLTPClient, 

which is the client side of the WLTP protocol, the notifier obtains wire labels (as opposed to wire-label pairs) and notifies the 

ports of the component with these wire-labels. The component is notified not only with objects, but also with a function, which 

is Garble on the server side and Eval on the client side. The notification travels in the component and will eventually hit a gate. 

When a gate receives all of its objects, it applies the function to the objects. The output wire of the gate is then notified with 

the output of the function, and the process continues until all gates are notified. We mention that VMCrypt has two types of 

gates: UniGates (one input, one output) and BinaryGates (two inputs, one output), both can be found in VMCrypt.component. 

 

We will walk through the GC protocol only with respect to the DBSearch component; the MIN and SetIntersection components 

follow the same principles. The input of the client is defined by the class DBSearchInputClient. Similarly, the input of the server 

is defined by the class DBSearchInputServer. Both classes extend DBSearchInput, which implements ComponentInput. Global 

variables, such as the database size and the bit length of database elements are contained in the class DBSearchGlobals. 

Intuitively, the purpose behind these classes is to allow VMCrypt to access the input to the parties. Notice that you can 

calculate the DBSearch component as we did in Example1. 

  

ComponentInput 

DBSearch 

DBSearchInput 

DBSearchInputServer DBSearchInputClient 

 Sample classes 

(not part of 

VMCrypt) 

DBSearchGlobals 

 
VMCrypt 

classes 



VMCrypt V 1.4|All Rights Reserved, Lior Malka, 2010|Updated April 4, 2011 12 

 

The isServerInput(i) method in DBSearchInput returns true if and only if the i-th input bit to the component is a server input. 

The WLTP parties use this method in order to decide whether a wire-label should be transferred using OT or not. The inDegree() 

method in DBSearchInput allows the WLTP parties to determine how many wire-label pairs will be transferred. The getInput(i) 

method in DBSearchInputServer is used for a similar purpose. Specifically, given a wire-label pair on port i, the WLTPServer calls 

getInput(i) to decide which of the wire-labels should be sent to the client. Similarly, the WLTPClient invokes getInput(i) of 

DBSearchInputClient to decide which wire-label to ask for during the OT sub-protocol.  

 

You will notice that the other components (MIN and SetIntersection) also have four files to support their secure computation. If 

you want to run the GC protocol on these components, then all you need to do is make sure their parameters reflect your 

computation. These parameters include: the number of input bits, which inputs belong to which party, the value on these 

inputs, and so on. For any other component, you will need to make copies of these files (under a different name, of course) and 

then modify them to suit your needs. 

 

Let us walk through the code in the run() method from ServerBody. The testDBSearch() method instantiates the DBSearch 

component. It sets the Bus of this component to be a Terminal. Informally, the Terminal is needed because the function 

computed on each gate may depend on whether the output wire of this gate is also an output wire of the entire component or 

not. We remark that VMCrypt wires “do not know” if they are output wires of the component (you may be tempted to think 

that if a wire points to NULL, then it is an output wire of the component, but this is not the case). VMCrypt uses the Terminal to 

define behaviors that should be taken on output wires. See the terminalCompute method from Function (in 

VMCrypt.component) for more. The PTable defined testDBSearch() is a global two dimensional table where components can 

push messages for other components to pull. Once the variables component, componentInput, and pTable are defined, the 

run() method in ServerBody  can instantiate the server side of the GC protocol (called GCServer) and start it. The above 

description also applies to the run() method from ClientBody, except that there we have a few more lines that take care of 

displaying the client output and measuring the running time. 

 

Before we conclude this section, we note two non-trivial facts. The first one is that the PTable is a global table. Components 

push objects to and pull objects from the PTable. Yet, the PTable is not one of arguments passed to the components during 

notification. Why? Because the PTable is included inside the Function, which is passed as an argument during notification. The 

second fact pertains to the Garble function. For each gate, this function prepares a lookup table. This lookup table depends on 

whether the output wire of the gate is an output wire of the component or not. However, as we mentioned earlier, VMCrypt 

output wires “do not know” if they are output wires of the component or not. Consequently, when the Garble function handles 

a gate, it does not know whether it should garble for an inner gate or not. To work around this problem, the Garble function is 

doing “delayed” garbling. That is, it stores all of its input in a state called StateOfBinaryGate (an inner class of Garble) instead of 

preparing a lookup table. Notice that after a function (in this case Garble) is computed on a gate, the output wire of the gate is 

notified. Now, if this wire is an output wire, then the notification will hit the Terminal immediately after StateOfBinaryGate is 

updated. This will cause the terminalCompute in Function (in this case, the terminalCompute in Garble) to take the contents of 

StateOfBinaryGate and prepare a different lookup table than for inner gates. This solves the problem. 
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VMCrypt directory structure 
 

VMCrypt contains many modules. These modules are stored in subdirectories. In addition, the modules are part of a Java 

package. The package name and the directory must coincide. For example, the first line in the Monitor.java file is “package 

VMCrypt.util;”. Since Monitor belongs to VMCrypt.util, it is stored in VMCrypt/util. The table below describes the subdirectories 

and their contents. 

 

Directory Contents Example 

component The “kernel” of VMCrypt. This directory contains 

the core classes for building and managing 

components 

PTable, UniGate, BinaryGate, Wire, Bus, Buffer, 

Circuit, Switch, UniSwitch, Map, ComponentEvent, 

Function 

primitive Basic components MUX, CMP, BIN, EQ 

composite Complex components MIN, DBSearch, EQMUX 

function Functions that can be applied to gates Calculate, Garble, Eval 

net Network support VMCryptClient, VMCryptServer 

io Input and output support for streams CounterInputStream, CounterOutputStream 

util Utilities Monitor, TestModule, BitOperations 

crypto Cryptographic tools LookupTable, SymmetricEncryption 

protocol 

base 

GC 

OT 

WLTP 

 

Generic protocol classes 

Yao’s Garbled Circuit protocol 

Oblivious Transfer protocols 

Wire Label Transfer Protocol 

 

Protocol, ProtocolEvent 

GCParty, GCClient, GCServer, Notifier 

OTClient, OTServer, OTXClient, OTXServer 

WLTPClient, WLTPServer, ComponentInput 
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Appendix – Bus pitfalls 

 

This section provides insight into how you may accidently create bugs related to the Bus, and what to do so that such bugs are 

avoided. You may encounter such bugs either during the development of new components, or the usage of existing ones. 

 

1. When you construct a component, you pass an instance of class Bus that is already being used by another 

component. This is fatal and can cause arbitrary behavior. Remember: each component must have its own bus. 

2. You have created a wire in component A. This wire is connected to component B. This is also fatal because the bus of 

component A will not be able to count the signal leaving component A. Consequently, component A will not destruct 

when it finishes computing. Remember: subcomponents of A only notify other subcomponents of A or the bus of A. 

3. You want to use a component several times (e.g., you want to compute it on different inputs, like we have done in 

Example 1), but you forget that once the component finishes computing, the bus destructs not only the component, 

but also itself (that is, the bus is destructed). The next time you use the component, you will get some error that 

stems from the fact that the bus (originally not NULL) has a NULL value. Remember: whenever you use a component 

more than once, some of the objects you have originally constructed are set to NULL. 

4. You have wired your component incorrectly, causing more signals to leave through the bus than the outDegree of 

your component. Consequently, the bus of your component destructs your component (and itself) prematurely. The 

next time your component is used (e.g., it receives a notification), you get an error stemming from the fact that your 

component (originally not NULL) has a NULL value. Remember: the outDegree is used only for one purpose – to tell 

the Bus when to destruct the component. A component should output exactly outDegree signals. Not more, not less. 
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Appendix – Packaging VMCrypt 
 

VMCrypt and its samples come in two Java Archive Files (JAR) files: VMCrypt.jar and samples.jar. You may have unpacked these 

files and modified the source code. If you want to repack VMCrypt, then go the directory containing VMCrypt, which we assume 

is /home/lior/Documents, and execute the following 

 

lior@ubuntu:~/Documents$ jar cf VMCrypt.jar VMCrypt 

 

This will create the file VMCrypt.jar in the directory /home/lior/Documents. In the same way you can pack the samples. 

 

 

Appendix – Generating the Documentation 
 

There are four ways to learn VMCrypt 

 

� Following the examples in this manual. 

� Reading the paper VMCrypt - Modular Software Architecture for Scalable Secure Computation,2010 by Lior Malka and 

Jonathan Katz (available from ePrint: http://eprint.iacr.org/2010/584.pdf). 

� Reviewing the presentation How to Design APIs for Cryptographic Protocols (available from 

http://www.lior.ca/publications/api_design.pdf). 

� Reading the VMCrypt source code and documentation – described below. 

  

The Java SDK that you have installed on your computer should come with a tool called Javadoc. This tool automatically 

generates the documentation for VMCrypt. You can run Javadoc after any modification to the source, and it will generate new, 

up-to-date documentation. As usual, assuming VMCrypt is located in /home/lior/Documents, you will generate the 

documentation by entering the directory where VMCrypt is stored, and executing 

 
lior@ubuntu:~/Documents/VMCrypt$ make documentation 

 

This will create a doc directory with all the documentation for VMCrypt. The doc directory will be stored at the parent directory 

of VMCrypt. That is, at /home/lior/Documents. Enter this directory. You will see that it contains an index.html file (and many 

directories that this index.html file links to). This index.html file is a webpage. If you double click it, your browser will launch and 

display the documentation. If you plan to add comments to the source code of VMCrypt, make sure they are formatted 

according to Javadoc specifications. This will guarantee proper display of your comments in the web pages generated by 

Javadoc.  
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