
How to Design APIs for Cryptographic Protocols

Lior Malka

Crypto Group, University of Maryland, USA

All Rights Reserved, Lior Malka, 2010 1

What is a Cryptographic Protocol?
�Usually two parties.

�Terminology: sender - receiver / server – client.

�Parties has input and output (possibly null).

�Threat model.�Threat model.

� Security parameters.

Bob Alice

All Rights Reserved, Lior Malka, 2010 2

API – Application Programming Interface

A software library is a collection of modules that provides services to

independent programs via an API (Abstract Programming Interface)

Example: Class Encryption uses Class Vector.Example: Class Encryption uses Class Vector.

Class Vector provides services to Class Encryption.

Class Encryption provides services to other classes.

The methods and variables through which a class provides

services are the API API of this class.

All Rights Reserved, Lior Malka, 2010 3

Software Design Without API

Pros

� Fast to implement in small projects.

� Agile – can serve as a starting point for API design.

� No need to consider how code interfaces with other software.

� Can be appropriate for small “dead end” projects.

Cons

� Inappropriate for large projects.

� Code has a limited (as opposed to general) functionality.

� Code is not reusable.

� Code is hard to maintain/modify.

� Prone to errors and bugs.

All Rights Reserved, Lior Malka, 2010 4

Why a Good API is hard to Design

� Forces designer to anticipate future usage of code.

�Requirements are incomplete (may never be complete).

�Requires abstraction.

�Requires modularization.�Requires modularization.

�Requires skills in programming languages.

�Requires code rewrites – time consuming and labor intensive.

All Rights Reserved, Lior Malka, 2010 5

The Benefits of API Driven Design

When an API is used in a project, it

� Allows to focus on the project.

� Saves development time.

� Reduces errors and debugging.� Reduces errors and debugging.

� Facilitates modular design.

� Provides a consistent development platform.

All Rights Reserved, Lior Malka, 2010 6

Case Study

Oblivious Transfer (OT)

All Rights Reserved, Lior Malka, 2010 7

Bob

Oblivious Transfer (OT) - Visually

Alice

X0 , X1b

nullXb

All Rights Reserved, Lior Malka, 2010 8

Oblivious Transfer (OT) - Formally

In an oblivious transfer protocol, Alice allows Bob to learn only one of
her inputs, but Bob does not tell Alice which one it is. Formally:

- The input of Alice is two strings: X0 and X1.

- The input of Bob is a bit b (0 or 1).- The input of Bob is a bit b (0 or 1).

At the end of the protocol:

- The output of Bob is Xb.

- The output of Alice is null.

Security properties:

Alice does not learn b, and Bob does not learn X1-b.

All Rights Reserved, Lior Malka, 2010 9

Implementing OT : 1st Attempt
class Alice {

String X0,X1;

encryption_key_length;

main(){

// open a socket and wait to hear from Bob..

:

send_first_message();

}

// methods for sending and receiving messages// methods for sending and receiving messages

void send(byte[] m) { … }

byte[] receive() { … }

/* methods for constructing the messages of Alice

and processing the replies of Bob */

void send_first_message(){

m1 = new byte[encryption_key_length];

:

send(m1);

receive_second_message();

}

void receive_second_message(){

byte[] m2 = receive();

:

}

}

All Rights Reserved, Lior Malka, 2010 10

What is Wrong With This Code?

� Mixes several unrelated functions.

� Has no API.

Exercise:

• List all the flaws in the OT protocol.

How would you modify the code so that it has an API?• How would you modify the code so that it has an API?

Next slides:

� Improve design and provide an API.

� We will only consider class Alice ; the same improvements apply to
class Bob .

All Rights Reserved, Lior Malka, 2010 11

Design Flaw: mixed functionality
class Alice {

String X0,X1;

encryption_key_length;

main(){

// open a socket and wait to hear from Bob..

:

send_first_message();

}

// methods for sending and receiving messages
Networking functions have

nothing to do with OT. They // methods for sending and receiving messages

void send(byte[] m) { … }

byte[] receive() { … }

/* methods for constructing the messages of Alice

and processing the replies of Bob */

void send_first_message(){

m1 = new byte[encryption_key_length];

:

send(m1);

receive_second_message();

}

void receive_second_message(){

byte[] m2 = receive();

:

}

}

nothing to do with OT. They

should be in a separate class

called “Server”

All Rights Reserved, Lior Malka, 2010 12

Redesign - Phase 1

First Objective

Separate networking functionality from the protocol.

All Rights Reserved, Lior Malka, 2010 13

Writing The Client and The Server
class Client {

Socket socket;

// methods for sending and receiving messages

void send(byte[] m) { … }

byte[] receive() { … }

}

class Server{

ServerSocket socket;

// methods for sending and receiving messages

void send(byte[] m) { … }

byte[] receive() { … }

}

All Rights Reserved, Lior Malka, 2010 14

Removing send & receive from class Alice

class Alice {

String X0,X1;

Server server;

encryption_key_length;

main(){

Alice alice = new Alice();

alice.server = new Server(..);

send_first_message();

}

// methods for sending and receiving messages

void send(byte[] m) { … }

byte[] receive() { … }

/* methods for constructing the messages of Alice

and processing the replies of Bob */

void send_first_message(){

m1 = new byte[encryption_key_length];

:

server.send(m1);

receive_second_message();

}

void receive_second_message(){

byte[] m2 = server.receive();

:

}

}
All Rights Reserved, Lior Malka, 2010 15

Implementing OT : 2nd Attempt
class Alice {

String X0,X1;

Server server;

encryption_key_length;

main(){

:

}

/* methods for constructing the messages of Alice

and processing the replies of Bob */

The problem with Class

Alice is that it can only be

used with class Server. It

cannot be used with any other

class, even if that class has

send and receive methods.

and processing the replies of Bob */

void send_first_message(){

m1 = new byte[encryption_key_length];

:

server.send(m1);

receive_second_message();

}

void receive_second_message(){

byte[] m2 = server.receive();

:

}

}

All Rights Reserved, Lior Malka, 2010 16

Fixing the Flaws

� class Alice only needs the network support: send and

receive methods.

� We do not want to tie users of class Alice to class
Server.

� Solution: use an interface to define what we expect from a

network module. Then, replace class Server with the

interface.

All Rights Reserved, Lior Malka, 2010 17

Rewriting The Client and The Server

class Client implements Party {

Interface Party {

// Interface methods (notice: methods are declared, but not defined)

void send(byte[] m)

byte[] receive()

}
Interfaces and abstract classes (also

known as virtual classes) are a sign of

a healthy API driven design.

class Client implements Party {

Socket socket;

// Implementation of send and receive from class Party

void send(byte[] m) { … }

byte[] receive() { … }

}

class Server implements Party {

ServerSocket socket;

// Implementation of send and receive from class Party

void send(byte[] m) { … }

byte[] receive() { … }

}

All Rights Reserved, Lior Malka, 2010 18

Removing “Boilerplate Code”

class Client implements Party {

Socket socket;

Interface Party {

void send(byte[] m)

byte[] receive()

}

Socket socket;

// Implementation of send and receive from class Party

void send(byte[] m) { … }

byte[] receive() { … }

}

class Server implements Party {

ServerSocket socket;

// Implementation of send and receive from class Party

void send(byte[] m) { … }

byte[] receive() { … }

}

Redundancy: send and

receive methods of class

Client do the same as those

in class Server. We will fix

this using inheritance (next slide)

All Rights Reserved, Lior Malka, 2010 19

Removing Redundancy Using Inheritance

interface Party

send

receive

class MyParty implments Party

send and receive are

declared in the interface,

but not defined.

class MyParty provides a class MyParty implments Party

send {…}

receive {…}

class Client extends MyParty class Server extends MyParty

class Client and class

Server inherit send and

receive from class MyParty

class MyParty provides a

specific implementation of

send and receive

All Rights Reserved, Lior Malka, 2010 20

Finishing the Client and The Server

class MyParty implements Party {

// Implementation of send and receive

void send(byte[] m) { … }

Interface Party {

// Declaration of send and receive

void send(byte[] m);

byte[] receive();

}

void send(byte[] m) { … }

byte[] receive() { … }

}

class Client extends MyParty {

Socket socket;

:

}

class Server extends MyParty {

ServerSocket socket;

:

}

All Rights Reserved, Lior Malka, 2010 21

Summary of Improvements So Far

class MyParty implements Party {

// Implementation of send and receive

void send(byte[] m) { … }

Interface Party {

// Declaration of send and receive

void send(byte[] m);

byte[] receive();

}

class Alice can be used

from any client/server

implementing interface

Party.

Send and receive are easy

to maintain/modify because

they only appear in one place.void send(byte[] m) { … }

byte[] receive() { … }

}

class Client extends MyParty {

Socket socket;

:

}

class Server extends MyParty {

ServerSocket socket;

:

}

class Client and class

Server can be used in any

client/server application

they only appear in one place.

Network I/O exceptions can be

handled here, instead of in

class Alice.

All Rights Reserved, Lior Malka, 2010 22

Implementing OT : 3rd Attempt
class Alice {

String X0,X1;

Party party;

encryption_key_length;

main(){

Alice alice = new Alice();

alice.party = new Server(..);

send_first_message();

}

/* methods for constructing the messages of Alice

and processing the replies of Bob */

void send_first_message(){

m1 = new byte[encryption_key_length];

:

server.send(m1);

receive_second_message();

}

void receive_second_message(){

byte[] m2 = server.receive();

:

}

}

All Rights Reserved, Lior Malka, 2010 23

Redesign – Phase 2

� Remove main(). We are building a library; not an application.

� Decouple message construction from protocol flow.

� Encapsulate the class; provide methods that set the input and

get the output.get the output.

All Rights Reserved, Lior Malka, 2010 24

Removing main()

class Alice {

String X0,X1;

Party party;

encryption_key_length;

main(){

Alice alice = new Alice();

alice.party = new Server(..);

send_first_message();

The server will be passed to the

constructor of class Alice,

and send_first_message

will be handled in a “run” method.send_first_message();

}

/* methods for constructing the messages of Alice

and processing the replies of Bob */

void send_first_message(){

m1 = new byte[encryption_key_length];

:

party.send(m1);

receive_second_message();

}

void receive_second_message(){

byte[] m2 = party.receive();

:

}

}

will be handled in a “run” method.

All Rights Reserved, Lior Malka, 2010 25

class Alice {

String X0,X1;

Party party;

encryption_key_length;

public Alice(Party party) {

this.party = party;

}

/* methods for constructing the messages of Alice

This is better. Now Alice can be

used with any class implementing

interface Party

Removing main()

/* methods for constructing the messages of Alice

and processing the replies of Bob */

void send_first_message(){

m1 = new byte[encryption_key_length];

:

party.send(m1);

receive_second_message();

}

void receive_second_message(){

byte[] m2 = party.receive();

:

}

}

This is not good. Messages are

constructed and sent / received in

various locations in the code.

All Rights Reserved, Lior Malka, 2010 26

class Alice {

String X0,X1;

Party party;

encryption_key_length;

public Alice(Party party) {

this.party = party;

}

Decoupling Message Construction

From Protocol Flow

void run() {

party.send(first_message());

process_second_message(party.receive());

:

}

void byte[] first_message(){

m1 = new byte[encryption_key_length];

:

return m1;

}

void process_second_message(byte[] m2){

:

}

}

Method run centrally defines message

flow in the protocol. This makes the code

easier to maintain and read.

Methods first_message and

process_second_message are

now defined purely in terms of input

and output. This enables us to test

their correctness independently

(without having to run the protocol).

All Rights Reserved, Lior Malka, 2010 27

class Alice {

private String X0,X1;

Party party;

encryption_key_length;

public Alice(Party party) {

this.party = party;

}

Encapsulating Data Members

void run() {

party.send(first_message());

process_second_message(party.receive());

:

}

void setInput(String X0, String X1) {

this.X0 = X0;

this.X1 = X1;

}

String getOutput() {

return null;

}

}

Method setInput sets Alice’s input.

It should be called before the protocol

starts (method run). Method

getOutput returns Alice’s output.

Alice could also return an error code

(0 or -1 depending on successful

completion).

All Rights Reserved, Lior Malka, 2010 28

class MyProjectServer {

main() {

Server server = new Server();

Alice alice = new Alice(server);

// Alice has two messages: “secret1” and “secret2”.

alice.setInput(“secret1”,”secret2”);

alice.run();

}

}

How The API Will be Used

}

class MyProjectClient {

main() {

Client client = new Client();

Bob bob = new Bob(client);

// Bob chooses message 0.

bob.setInput(0);

bob.run();

System.out.println(“Message 0 is “ + bob.getOutput());

}

}

All Rights Reserved, Lior Malka, 2010 29

Recap of Case Study

�We turned class Alice from an application into a library.

�Developers can integrate Alice in any project. They only

need to provides a class implementing interface Party.

�We wrote general purpose classes Client and Server �We wrote general purpose classes Client and Server

that can be reused in other projects.

�The message functions of class Alice can be tested

independently, without having to run the full protocol.

�The API driven design resulted in code that is easier to

maintain, read, use, and debug.

All Rights Reserved, Lior Malka, 2010 30

New Problems: A Growing Library

How can we guarantee consistency among our protocols?

It would be ideal if all protocols have a method run and

methods setInput and getOutput just like in our methods setInput and getOutput just like in our

oblivious transfer protocol.

All Rights Reserved, Lior Malka, 2010 31

Solution: Abstraction

We define Protocol as an abstract class.

Abstract classes play a similar role to that of interfaces.

Java interfaces can only declare functions. Java abstract classes can do that, and

in addition provide implementations and data members. A class can implement

several interfaces, but only extend one class (either abstract or not).

All Rights Reserved, Lior Malka, 2010 32

abstract class Protocol {

Party party;

Protocol(Party party) {

this.party = party;

Abstract Class Protocol

party is a data member because all

protocols need to have means for

sending and receiving messages.

All of our protocols will be of the following form:

this.party = party;

}

abstract void setInput(String[] input);

abstract void run();

abstract String getOutput();

}

Classes extending class Protocol

must implement these methods.

Class B can extend abstract class A without implementing all abstract methods of

class A. However, only sub classes of A (or B) implementing all abstract methods

of A can be instantiated.

All Rights Reserved, Lior Malka, 2010 33

Extending Class Protocol

We rewrite class Alice in terms of class Protocol.

class Alice extends Protocol {

private String X0,X1;

encryption_key_length;

public Alice(Party party) {

super(party); // invoking constructor of super classsuper(party); // invoking constructor of super class

}

void run() {

:

}

void setInput(String X0, String X1) {

this.X0 = X0;

this.X1 = X1;

}

String getOutput() {

return null;

}

}

Abstract classes are extended, whereas interfaces are implemented.

All Rights Reserved, Lior Malka, 2010 34

abstract class Protocol {

Party party;

Protocol(Party party) {

this.party = party;

}

abstract void setInput(String[] input);

Abstract Class Protocol – Not Generic

setInput and getOutput are defined

in terms of Strings. This works for
abstract void setInput(String[] input);

abstract void run();

abstract String getOutput();

}

in terms of Strings. This works for class

Alice, but may not work for protocols

with other input/output types.

All Rights Reserved, Lior Malka, 2010 35

abstract class Protocol<I, O> {

Party party;

Protocol(Party party) {

this.party = party;

}

Meta Programming

We define the class with non-fixed types:

I and O are parameters. They take a

type value during compilation time,

when we define class Alice.

}

abstract void setInput(I input);

abstract void run();

abstract O getOutput();

}
The input and output types are

defined in terms of the parameters

passed for I and O.

Java and C++ are strongly typed languages. They disallow writing code that

ignores types. In some cases this is a disadvantage. To overcome this issue, Java

provides Generics and C++ provides Templates.

All Rights Reserved, Lior Malka, 2010 36

Rewriting class Alice

class Alice extends Protocol<String[], String> {

private String X0,X1;

encryption_key_length;

public Alice(Party party) {

super(party); // invoking constructor of super class

}

void run() {

This is good. The type of I is String[] and

the type for O is String. Each protocol can

use different types as necessary.

void run() {

:

}

void setInput(String[] X) {

X0 = X[0];

X1 = X[1];

}

String getOutput() {

return null;

}

}

All Rights Reserved, Lior Malka, 2010 37

Advantages of The New Design

�Modularity: all protocols extend class Protocol.

�Consistency: all protocols are started with the run method.

Input is always set with setInput, and output is always

obtained with getOutput.obtained with getOutput.

�Protocol input and output is managed via type safe functions.

All Rights Reserved, Lior Malka, 2010 38

Summary

We started with an Oblivious Transfer application. Then,

� We wrote a generic client and a server.

� Our client & server can be used in other projects.

� We separated networking from the OT protocol.

� Our OT protocol can be integrated in any project.

� We separated protocol flow from message construction.

� Our code is easier to maintain and understand.

� We standardized all protocols using an abstract class.

� Our library is type safe and consistent.

All Rights Reserved, Lior Malka, 2010 39

Conclusion

� API driven design requires planning and programming skills.

� API driven design is costly initially, but it pays in the long run.

� Agile approach is still useful as a basis for API driven design.

All Rights Reserved, Lior Malka, 2010 40

