
A Study of Perfect Zero-Knowledge Proofs

by

Lior Malka

B.Sc., Ben-Gurion University, Israel, 2001
M.Sc., Ben-Gurion University, Israel, 2004

A Dissertation Submitted in Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy

in the Computer Science Department

c© Lior Malka, 2008
University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part,
by photocopy or other means, without the permission of the author

ii

A Study of Perfect Zero-Knowledge Proofs

by

Lior Malka

B.Sc., Ben-Gurion University, Israel, 2001
M.Sc., Ben-Gurion University, Israel, 2004

Supervisory Committee

Dr. Bruce Kapron, Supervisor
(Computer Science Department)

Dr. Venkatesh Srinivasan, Co-Supervisor
(Computer Science Department)

Dr. Valerie King, Departmental Member
(Computer Science Department)

Dr. Aaron Gulliver, Outside Member
(Electrical Engineering Department)

iii

Supervisory Committee

Dr. Bruce Kapron, Supervisor
(Computer Science Department)

Dr. Venkatesh Srinivasan, Co-Supervisor
(Computer Science Department)

Dr. Valerie King, Departmental Member
(Computer Science Department)

Dr. Aaron Gulliver, Outside Member
(Electrical Engineering Department)

Abstract

Perfect zero-knowledge proofs enable one party (the prover) to prove an assertion to another party (the
verifier) but without revealing anything but the truth of the assertion. The class of problems admitting
such proofs is rich, including GRAPH-ISOMORPHISM, QUADRATIC-RESIDUOUSITY, and other problems
that play a key role in cryptography and complexity theory. Due to their strong privacy guarantee, perfect
zero-knowledge proofs are very difficult to study. Despite extensive research since the 1980s, especially
in the area of statistical zero-knowledge proofs, many fundamental questions about them remain open, and
it is not even clear how to address these questions. This thesis initiates a general investigation of perfect
zero-knowledge proofs. Our main results are as follows.

• We prove that all the known problems admitting perfect zero-knowledge (PZK) proofs can be charac-
terized as non-interactive instance-dependent commitment schemes, and use this result to generalize
and strengthen previous results, as well as to prove new results about PZK problems.

• We give a new error shifting technique that allows us to overcome barriers in the study of PZK.
Using this technique we present the first complete problem for the class of problems admitting non-
interactive perfect zero-knowledge proofs (NIPZK), and the first hard problem for the class of prob-
lems admitting public-coin PZK proofs.

• We make the first investigation into one of the most important questions in the field, namely, whether
the number of rounds in PZK proofs can be collapsed to a constant. We give the first perfectly hiding
commitment scheme, and prove that obtaining such scheme that is also constant round is equivalent

to collapsing the rounds in PZK proofs to a constant.

Contents

Preface i
Supervisory Committee . ii

Abstract . iii

Table of Contents . vi

List of Figures . vii

Acknowledgements . viii

1 Introduction 1
1.1 Zero-Knowledge Protocols . 1

1.2 Background . 2

1.3 Motivation . 3

1.4 Our Results . 4

1.4.1 Characterizing Non-interactive Instance-Dependent Commitment Schemes (NIC) . . 4

1.4.2 Perfect Simulation and a Complete Problem for NIPZK 5

1.4.3 The Round Complexity of Perfect Zero-Knowledge Proofs 5

2 Definitions 6
2.1 A Simple Zero-Knowledge Protocol . 6

2.1.1 Preliminaries . 6

2.1.2 Motivating the Protocol . 6

2.1.3 Analysis of the Protocol . 7

2.2 Conventions . 8

2.3 Interactive Protocols . 10

2.4 Indistinguishability . 11

2.5 Zero-Knowledge . 12

3 Non-interactive Instance-Dependent Commitment Schemes 14
3.0.1 Motivation . 15

3.0.2 Main Results . 15

iv

 iv

iv

CONTENTS v

3.0.3 Organization . 16

3.1 Non-interactive, Instance-Dependent Commitment-Schemes (NIC) 16

3.2 Characterizing V-bit Zero-Knowledge Protocols . 18

3.2.1 From NIC to V -bit Zero-Knowledge Protocols . 18

3.2.2 From V -bit Zero-Knowledge Protocols to NIC . 19

3.3 Random Self-Reducibility Implies NIC . 22

3.4 Closure of Problems Possessing NIC under Monotone Boolean Formulae 23

3.4.1 The Closure Result - How to Combine NIC in a Monotone Boolean Formula Fashion 24

3.4.2 Proof of the Closure Result . 25

3.5 Consequences - the NIC Framework . 29

3.5.1 Sigma protocols . 32

3.6 Proofs of Lemma 3.4.5 and Lemma 3.4.7 . 33

3.6.1 Proof of Lemma 3.4.5 . 33

3.6.2 Proof of Lemma 3.4.7 . 34

3.7 Open Questions . 35

4 Perfect Simulation and A Complete Problem for NIPZK 37
4.0.1 Main results . 37

4.0.2 Organization . 38

4.1 Definitions . 39

4.2 Perfect Simulation and A Complete Problem for NIPZK 40

4.2.1 A Complete Problem for NIPZK . 42

4.3 A Hard Problem for Public-Coin PZK Proofs . 44

4.3.1 Modifying the Reductions for Public-Coin HVSZK Proofs 45

4.4 Applications . 46

4.4.1 Obtaining Simulators That Do Not Fail . 47

4.4.2 Under Certain Restrictions NIPZK is Closed Under the OR Operator 48

4.5 Conclusion and Open Questions . 51

5 The Round Complexity of Perfect Zero-Knowledge Proofs 52
5.0.1 Approach . 52

5.0.2 Main results . 53

5.0.3 Related Work . 55

5.0.4 Organization . 56

5.1 Trivial Instance-Dependent Commitment Schemes . 56

5.2 Instance-Dependent Commitments from Hard Problems . 58

5.2.1 A Perfectly Hiding Scheme That is Almost Binding 58

5.3 A Preamble for Jointly Choosing Randomness . 61

vi CONTENTS

5.3.1 The Case of 3-round Public-Coin PZK Proofs . 62
5.3.2 The Case of Non-Interactive PZK Proofs . 62

5.4 Conclusion . 64

List of Figures

2.1 A simple zero-knowledge proof . 7

5.1 A perfectly hiding scheme whose binding property holds on almost all the random inputs. . . 59

vii

vii vii

viii LIST OF FIGURES

Acknowledgements

When I started my PhD in computer science, back in January 2004, I had no idea what difficulties I
would meet down the road. Surprisingly, it was not the Canadian winter. My supervisors at the time, Bruce

Kapron and Valerie King, hosted me at their house, took excellent care of me, and introduced me to the city
of Victoria. And although we worked together, my relationship with Bruce and Valerie is more like a family.
They helped and supported me in everything that I did.

Venkatesh Srinivasan became my supervisor early in my first year. We were both interested in complex-
ity theory, so it was natural for us to study zero-knowledge protocols. We spent a lot of time together, and I
learned a lot from him, not just about theoretical computer science, but also about the academic world.

There is a very big group of friends who instilled me with confidence, encouraged me when times were
hard, and more importantly- trusted me. Each of these people did or said something that had a profound
impact on my life. A partial list of these people include: Eti Vainer, Katarina Sebestova, Christiaan Piller,
Ollie Ayling, Elad Schiller, Cassandra Morton, Tricia Best, Joe Parsons, Anissa Agah, Jennifer Murdoch,
Warren Shenkenfelder, Allan Scott, Darcy Lindberg, Lindsey McDowell, and John Orser. On the academic
side: Ivan Visconti, Giuseppe Persiano, Omer Reingold, Oded Goldreich, Salil Vadhan, Cynthia Dwork,
Wendy Myrvold, Amos Beimel, Ilia Goldstein, Charlie Rackoff, Amit Sahai, Rafail Ostrovsky, Omkant
Pandey, and Vipul Goyal. Sorry if I have forgotten a few.

My parents, siblings, cousins, uncles, and aunts were always there for me, and without their help I would
not be able to get this far. Above all I want to thank my grandmother Aliza. When I was 22, infected with
the travel bug and complaining about life as a computer science bachelor student, she said that one day I

will be a doctor. I really thought that she was joking.

Chapter 1

Introduction

Perfect zero-knowledge protocols enable one party (the prover) to prove an assertion to another party (the
verifier) but without revealing anything but the truth of the assertion [46]. Other variants of these protocols
(statistical and computational zero-knowledge protocols) have been studied extensively. In these variants the
prover is allowed to leak a small amount of information to the verifier. In contrast, perfect zero-knowledge
protocols require that the prover leak absolutely no information to the verifier. This rigid definition pro-
vides the highest level of privacy to the prover, but it also makes perfect zero-knowledge protocols hard to
study. This is so because there are many useful tools for zero-knowledge protocols, but these tools have
a side effect that they cause the prover to leak a small amount of information to the verifier. Such tools
greatly facilitated the study of statistical and computational zero-knowledge protocols, but they cannot be
used to study perfect zero-knowledge protocols. Consequently, many fundamental questions that have been

answered in the statistical and the computational settings remain open in the perfect setting.

The goal of this thesis is to initiate a study of perfect zero-knowledge proofs. In this chapter we give
background and context to our research. We begin with an informal discussion that motivates the notion
of zero-knowledge. Then we informally describe the notions of perfect, statistical and computational zero-
knowledge protocols, and explain how the study of statistical zero-knowledge proofs inspired this thesis.
Our results appear at the end of the section.

1.1 Zero-Knowledge Protocols

Zero-knowledge protocol enable one party (the prover) to prove an assertion to another party (the verifier)
but without revealing any information other than the validity of the assertion [46]. To demonstrate this
concept, we use the zero-knowledge protocol of [41] for GRAPH-ISOMORPHISM. In this protocol the input
to the prover and the verifier is a pair of graphs 〈G0, G1〉, and the goal of the prover is to convince the
verifier that the graphs are isomorphic, but without revealing any information. If G0 and G1 are isomorphic,

then the prover also has a permutation π such that π(G0) = G1 (i.e., π is an isomorphism).

2 CHAPTER 1. INTRODUCTION

Before we describe the protocol of [41], notice that a simple idea is to have the prover send π to the
verifier, and let the verifier use π to check whether the graphs are isomorphic or not. This guarantees that
the verifier accepts only if the graphs are isomorphic. However, from a cryptographic perspective this idea
is undesirable because the prover also reveals π to the verifier, and this is information that the verifier may
not have been able to compute on its own (because the verifier runs in polynomial time, and computing an
isomorphism may require more time than that).

Amazingly, the protocol of [41] allows the prover to convince the verifier, but without revealing anything,

not even π. Informally, the idea is to have the prover send a random copy G of G0 to the verifier, and then
let the verifier reply with a random bit b. The prover now replies with a permutation π′ between G and
Gb. Thus, when the graphs are isomorphic the verifier accepts, and it learns nothing other than this fact. If
the graphs are not isomorphic, then the verifier rejects with probability 1/2, but this can be reduced using
repetition (assuming that the verifier follows the protocol).

A common application for zero-knowledge protocols is in identification schemes, due to Feige, Fiat, and
Shamir [35]. For example, a user can choose isomorphic graphs 〈G0, G1〉 together with an isomorphism π

between them, and then use these graphs to register in various online services, such as online-banking, e-

mail accounts, and so on. Now the user can log into these services by proving that the graphs are isomorphic.
The advantages of this mechanism is that one identity can be used for various accounts, and only the user
knows the password (we think of the isomorphism π as the password). Of course, there are many technical
issues that need to be dealt with. For example, in addition to choosing 〈G0, G1〉 and an isomorphism, the
user must make sure that no efficient adversary who sees G0 and G1 can compute an isomorphism between
them. Also, compared to standard passwords, π may be more difficult to remember. Yet, this application
demonstrates the potential of zero-knowledge protocols.

1.2 Background

Zero-knowledge protocols were introduced in the 1980s by Goldwasser, Micali, and Rackoff [46], who also
gave the first zero-knowledge proof, namely, the zero-knowledge proof for QUADRATIC-RESIDUOUSITY.
Following this, Goldreich, Micali and Wigderson [41] showed that GRAPH-ISOMORPHISM has a zero-
knowledge proof, which we described in the previous section. In both proofs, the messages exchanged
between the prover and the verifier leak absolutely no information to the verifier but the truth of the assertion
being proved. Such protocols are called perfect zero-knowledge.

Another line of research that started in the 1980s is zero-knowledge protocols for any NP language (as
opposed to a particular language). In these protocols the prover can prove any NP statement by using a cryp-
tographic primitive called a bit commitment scheme. The first zero-knowledge proof for NP is due to [41].

It uses the computationally hiding commitment of [67], and thus it is computational (as opposed to perfect)

1.3. MOTIVATION 3

zero-knowledge. Informally, in a computational zero-knowledge protocol the amount of information leaked
by the prover is negligible from the perspective of an efficient algorithm.1

We remark that, under various number theoretic assumptions, perfect zero-knowledge arguments for NP
have been constructed in both the interactive [20, 21] and the non-interactive models [47] (informally, argu-

ments [19] require that no efficient prover can make the verifier accept false statements, whereas the stronger
notion of proofs [46] requires that no prover can make the verifier accept false statements). However, we
are concerned with the unconditional study of perfect zero-knowledge proofs. Also, notice that perfect (and
even statistical) zero-knowledge proofs for NP are unlikely to exist, as this would imply the collapse of the
polynomial-time hierarchy [37, 3, 18].

Towards the end of 2000 Sahai and Vadhan [77] discovered that there are natural problems admitting
statistical zero-knowledge proofs. Informally, in a statistical zero-knowledge protocol the amount of infor-
mation leaked by the prover is negligible. We can now list the three notions of zero-knowledge:

• Perfect Zero-Knowledge - the amount of information that the prover leaks to the verifier is 0.

• Statistical Zero-Knowledge - the amount of information leaked to the verifier is negligible.

• Computational Zero-Knowledge - from the perspective of any probabilistic polynomial-time Turing
machine, the amount of information leaked to the verifier is negligible.

This shows that the notions of statistical and perfect zero-knowledge are very close. Specifically, both
require that the amount of information leaked be either 0 or small, regardless of the computational power
of the observer. In contrast, a computational zero-knowledge protocol may leak a lot of information, but if
a Turing machine only has polynomial time to inspect the messages exchanged between the prover and the
verifier, then the amount of information that it can gain from them is negligible.

1.3 Motivation

The research in this thesis started with the observation that all the results from the statistical setting do
not apply to the perfect setting. For example, Ong and Vadhan [73] recently showed a transformation that
takes any statistical zero-knowledge proof, and turns it into a constant-round statistical zero-knowledge
proof. That is, in any statistical zero-knowledge proof the number of messages exchanged between the
prover and the verifier can be reduced to a constant. Unfortunately, when we apply this transformation to
perfect zero-knowledge proofs, we do not get constant-round perfect zero-knowledge proofs. Rather, we
get constant-round statistical zero-knowledge proofs. Again, this phenomenon occurs with all the general
results from the statistical setting, including transformations from private-coins to public-coins [71, 42],
from honest to malicious verifier [42], and from inefficient to efficient provers [72]. These transformations

1Negligible means that, for any polynomial p, the amount is less than 1/p(|x|) for all sufficiently large inputs x.

4 CHAPTER 1. INTRODUCTION

apply to statistical zero-knowledge proofs, and they even extend to the computational setting [87], but they
do not apply to perfect zero-knowledge proofs.

Intuitively, the results from the statistical setting do not apply to the perfect setting because they use
tools whose side effect is that they cause the prover to leak a small amount of information to the verifier.
Such tools, like lower-bound sub-protocols [6, 45, 83] or circuits manipulation [77], enrich the study of
statistical zero-knowledge and make it more flexible. Unfortunately, since perfect zero-knowledge proofs

require that the prover leak absolutely no information, we cannot use these tools in the perfect setting.
Consequently, many fundamental questions that have been solved in the statistical setting remain open in
the perfect setting. We believe that addressing these questions has good motivation from the perspective of
both complexity theory and cryptography:

Complexity Theory. One of the most important questions in computer science is whether the com-

plexity classes P and NP coincide. This makes perfect zero-knowledge proofs interesting because all
the known problems admitting non-trivial perfect zero-knowledge proofs, like GRAPH-ISOMORPHISM,
are in NP, but not known to be NP-complete or in P. We remark that many of these problems are also
random-self reducible [4], and such problems have been studied extensively in the context of both zero-
knowledge [4, 84, 12, 79] and complexity theory (c.f., [1, 36]). This applies to GRAPH-ISOMORPHISM in
particular (c.f., [41, 18, 85, 55]).

Cryptography. Perhaps the most attractive feature of perfect zero-knowledge protocols is that they provide
perfect privacy to the prover. That is, unlike statistical zero-knowledge protocols, where the prover leaks a
small amount of information to the verifier, in perfect zero knowledge proofs the prover leaks absolutely no
information to the verifier. This makes them valuable to cryptography.

In addition, many problems that admit perfect zero-knowledge proofs, like QUADRATIC-RESIDUOUSITY

and DISCRETE-LOGARITHM, play a central role in cryptography, and they are used in key agreement, en-
cryption schemes, and digital signatures (c.f., [31, 33]). Finally, as we demonstrated earlier with GRAPH-
ISOMORPHISM, there are perfect zero-knowledge protocols that yield identification schemes, such as the
protocol of [35] for QUADRATIC-RESIDUOUSITY.

1.4 Our Results

We informally describe our main results.

1.4.1 Characterizing Non-interactive Instance-Dependent Commitment Schemes (NIC)

We started our research by considering all the known problems admitting perfect zero-knowledge proofs.
We observed that these problems admit 3-round perfect zero-knowledge proofs, and then we proved that

a problem admits such a proof if and only if it admits a simple combinatorial object, which we called a

1.4. OUR RESULTS 5

non-interactive instance-dependent commitment-scheme (NIC). The advantage of NIC is that they allow
us to study all the known problems admitting perfect zero-knowledge proofs from a new direction. Indeed,
we used NIC to strengthen and generalize previous results, as well as to prove new results about problems
admitting perfect zero-knowledge proofs. These results, described in Chapter 3, are joint work with Bruce
Kapron and Venkatesh Srinivasan [51].

1.4.2 Perfect Simulation and a Complete Problem for NIPZK

Following our characterization of the known problems admitting perfect zero-knowledge proofs, we sought
to provide a general framework (through complete problems) that would capture all the problems admitting
perfect zero-knowledge proofs. We present the first complete problem for the class of problems possessing
non-interactive perfect zero-knowledge proofs (NIPZK), and the first hard problem for the class of problems
possessing public-coin perfect-zero-knowledge proofs. To obtain these problems we use a new error shifting

technique, which has other useful applications. These results, published in [59], are described in Chapter 4.

1.4.3 The Round Complexity of Perfect Zero-Knowledge Proofs

Using the tools we developed, we can now address the question whether perfect zero-knowledge proofs have
a constant number of rounds. This question is of both theoretical and practical importance. We give the first
evidence that perfectly (as opposed to statistically) hiding instance-dependent commitment schemes can be
constructed from any problem that has a perfect zero-knowledge proof, and show that obtaining such a
scheme that is also constant-round is not only sufficient, but also necessary to collapse the number of rounds
in perfect zero-knowledge proofs. We construct a non-interactive, perfectly hiding scheme whose binding
property holds on all but an exponentially small fraction of the inputs, and define a preamble to address the
binding property. An interesting consequence is the use of the circuits from our NIPZK-complete problem
in the commitment scheme of Naor [67], which leads to a new instant-dependent commitment scheme for
NIPZK problems admitting a small soundness error. These results, first published in [60], are described in
Chapter 5.

Chapter 2

Definitions

In this section we define protocols, proofs, indistinguishability, and zero-knowledge. To make these defini-
tions more intuitive, we start with a simple example of a zero-knowledge proof for the problem SD0,1, due
to Sahai and Vadhan [77]. The formal definitions are given in Sections 2.2- 2.5.

2.1 A Simple Zero-Knowledge Protocol

In this section we describe a zero-knowledge proof that uses exactly the same idea as the proof of [41] for
GRAPH-ISOMORPHISM. Informally, the prover and the verifier are given a pair of circuits 〈X0, X1〉, and
the goal of the prover is to convince the verifier that the circuits represent the same distribution, but without
revealing anything to the verifier except for the truth of this assertion. That is, the proof will be perfect
zero-knowledge.

2.1.1 Preliminaries

We start with notation. Let X : {0, 1}m → {0, 1}n be a function mapping binary strings of length m to
binary strings of length n. In addition to being a function, we can think of X as a distribution. For example,
if there are k inputs to X that make it output the string y, then the probability that X outputs y, denoted
Pr[X = y], is k/2m. That is, we make the convention that the input to X is uniformly distributed.

The common input to the protocol is a pair of functions 〈X0, X1〉 represented as circuits. When we say
that X0 and X1 are identically distributed, we mean that the distributions represented by the circuits are
identically distributed. That is, Pr[X0 = y] = Pr[X1 = y] for any y. When we say that X0 and X1 are
disjoint, we mean that the ranges of X0 and X1 are disjoint. That is, X0(r0) 6= X1(r1) for any r0, r1.

2.1.2 Motivating the Protocol

Recall that in our example the prover and the verifier are given two circuits X0 and X1, and the prover

wants to prove to the verifier that X0 and X1 are identically distributed. To simplify the presentation, we

6

2.1. A SIMPLE ZERO-KNOWLEDGE PROTOCOL 7

only consider two cases: either X0 and X1 are identically distributed, or they are disjoint (it is not known
how to entirely remove this restriction, but it can be relaxed [77]). If the assertion that X0 and X1 are
identically distributed is true, then the verifier should accept, but without learning anything but the truth of
this assertion. If X0 and X1 are disjoint, then the verifier should reject, regardless of how a malicious prover
may behave, and we do not care about what the verifier learns from the malicious prover.

The protocol is as follows. If X0 and X1 represent the same distribution, there is at least one pair
〈r0, r1〉 such that X0(r0) = X1(r1), and the prover uniformly chooses r0, computes m = X0(r0), and then
uniformly chooses r1 ∈ X−1

1 (m). The prover sends m to the verifier. The verifier replies with a random
bit b, and the prover sets r = rb, and sends r to the verifier. The verifier accepts if Xb(r) = m, and rejects
otherwise. This protocol if formally described in Figure 2.1.

A Zero-Knowledge Protocol for SD0,1

Common input: a pair of circuits 〈X0, X1〉. Let m be the num-
ber of input bits to X0.

1. The prover uniformly chooses r ∈ {0, 1}m, computes m =
X0(r), and sends m to the verifier.

2. The verifier uniformly chooses b ∈ {0, 1}, and sends b to
the prover.

3. The prover uniformly chooses an element r from the set
X−1

b (m) def= {r|Xb(r) = m}, and sends r to the verifier.

4. The verifier accepts if Xb(r) = m, and rejects otherwise.

Figure 2.1: A simple zero-knowledge proof

2.1.3 Analysis of the Protocol

We analyze Protocol 2.1, assuming the verifier is honest. If X0 and X1 are identically distributed, then for
any string m it holds that |X−1

0 (m)| = |X−1
1 (m)|, which implies that the verifier always accepts. In the

case that X0 and X1 are disjoint, given m there is i ∈ {0, 1} such that Xi(r) 6= m for any r. Since b is
chosen uniformly, if X0 and X1 are disjoint, then the verifier rejects with probability 1/2. We will later see
that these properties are called completeness and soundness, respectively, and a protocol admitting them is
called a proof.

To show that this proof is perfect zero-knowledge, we need to show that the verifier learns absolutely
nothing from the prover. We start with the observation that the verifier has three sources of information: its
randomness b, the common input 〈X0, X1〉, and the messages exchanged 〈m, b, r〉. Since the verifier always

knows the common input and its own random input, the zero-knowledge property is established by showing

8 CHAPTER 2. DEFINITIONS

that the verifier can compute the messages 〈m, b, r〉 on its own, without interacting with the prover. This
procedure is called the simulator. Thus, we want to show a simulator that computes the transcript 〈m, b, r〉
given b and X0, X1.

Notice that there could be different transcripts 〈m, b, r〉 in the interaction, each appearing with a certain
probability. We want the simulator to output these transcripts with the same probability. This can be done
as follows: the simulator uniformly chooses r′, computes m′ = Xb′(r′) using the bit b′ of the verifier,
and outputs 〈m′, b′, r′〉. We chose different names for these messages because we want to compare two
probability spaces: the one containing transcripts 〈m, b, r〉 from the interaction, and the one containing
outputs 〈m′, b′, r′〉 of the simulator.

It remains to show that the output 〈m′, b′, r′〉 of the simulator is identically distributed to the transcripts

〈m, b, r〉 exchanged between the prover and the verifier. This is rather straight forward, but we provide the
analysis for completeness. Our first observation is that, since X0 and X1 are identically distributed, the
distribution on the messages 〈m, b, r〉 remains the same if instead of computing m = X0(r), the prover
uniformly chooses c ∈ {0, 1} and computes m = Xc(r). Now, since the modified prover and the simulator
compute the first message in the same way, m and m′ are identically distributed. We continue to the mes-
sage b′. Since b is uniformly distributed and independent of m, we need to show that b′ is also uniformly
distributed and independent of m′. This follows from the fact that X0 and X1 represent the same distribution
(given m′, the value of b′ can be 0 with probability 1/2, and 1 with probability 1/2). Hence, conditioned on
m = m′, the bits b and b′ are identically distributed. We continue to the message r′. Since r′ is uniformly
chosen, given m′ and b′ the message r′ is uniformly distributed in X−1

b′ (m′). Since the prover also chooses
r uniformly from X−1

b (m), the transcripts 〈m, b, r〉 are identically distributed to the output 〈m′, b′, r′〉 of
the simulator. Thus, Protocol 2.1 is a perfect zero-knowledge proof for SD0,1.

2.2 Conventions

In this section we give common conventions to be used throughout this thesis.

Problems. A string x is a finite sequence of symbols from the alphabet {0, 1}, and |x| denotes the length of
x. As usual, ε denotes the empty string, and xk denotes k concatenations of x. The set {0, 1}n contains all
the strings of length n. When we refer to sets we mean countable sets of strings. Some of our results refer
to languages, which are sets, and some refer to promise-problems (or problems for short) [34]. A problem

Π is a pair 〈ΠY , ΠN 〉 of disjoint sets, and the complement of Π is defined as Π def= 〈ΠN , ΠY 〉. The set ΠY

contains YES instances, and the set ΠN contains NO instances. A language L can be defined as 〈L,L〉.

Probability. For background on probability theory we refer the reader to [66, 25]. We only consider
discrete probability spaces. As usual, the uniform distribution on the set {0, 1}n is the probability space that
assigns the probability 1/2n to each string in this set. We already mentioned that circuits will be treated

as distributions, assuming the uniform distribution on their input. For example, if X is a circuit that takes

2.2. CONVENTIONS 9

inputs of length n, and there are k inputs that make X output the string y, then Pr[X = y] = k/2n. The
distribution represented by X is also denoted X .

Turing machines and circuits. A Turing machine M runs in polynomial-time if there is a polynomial p

such that for any input x the computation of M on x, denoted M(x), takes at most p(|x|) steps. When we
write M(x) = 1 we mean that M accepts x, and when we write M(x) = 0 we mean that M rejects x. A
Turing machine decides a problem if M(x) = 1 when x is a YES instance of the problem, and M(x) = 0
when x is a NO instance.

A Turing machine M is probabilistic if it has a special random tape in which each bit is uniformly
chosen, and this tape is refreshed for each execution. We denote by Pr[M(x) = 1] the probability that
M outputs 1 given input x, where the probability is over the choices of the random tape. The class BPP
contains all the languages L that can be decided by a a probabilistic, polynomial-time Turing machine M .
That is, Pr[M(x) = 1] ≥ 2/3 when x ∈ L, and Pr[M(x) = 1] ≤ 1/3 when x /∈ L.

A sequence of circuits {Cn}n∈N is a non-uniform family of polynomial-size circuits if there is a poly-
nomial p such that |Cn| ≤ p(n) for all n, where |Cn| is some binary encoding of circuits. It is well known
that for any sequence {Mn}n∈N of Turing machines, if there is a polynomial p such that for all n it holds
that Mn runs in time at most p(n) on inputs of length n, then the sequence can be encoded by a family of
polynomial-size circuits (c.f., [75, 39]).

Complexity. The class of languages decided by polynomial-time, deterministic Turing machines is denoted
P. The famous class NP contains all languages decided by polynomial-time, non-deterministic Turing
machines. Alternatively, any NP language L can be associated with a relation R, a polynomial p, and a

deterministic, polynomial-time Turing machine M . The relation R contains pairs 〈x,w〉 satisfying |w| ≤
p(|x|), and w is called a witness for x. The machine M takes both x and w as input, and it accepts if and
only if x ∈ L.

Let C be a class of problems. A problem 〈ΠY , ΠN 〉 is hard for C (or simply C-hard) if for any problem
〈Π′Y ,Π′N 〉 ∈ C there is a deterministic, polynomial-time Turing machine f such that if x ∈ ΠY , then
f(x) ∈ Π′Y , and if x ∈ ΠN , then f(x) ∈ Π′N . Such f is called a Karp reduction. A problem is complete

for C (or simply C-complete) if it is contained in C and hard for C. For example, HAMILTONIAN-CIRUIT is
NP-complete because it is in NP, and any language in NP Karp reduces it [38].

The definition of classes in terms of languages naturally extends to problems, except that when we talk
about problems we only consider YES and NO instances, whereas in languages we consider all the strings
(that is, L and L). For example, 〈ΠY , ΠN 〉 is an NP-problem if there is a non-deterministic, polynomial-time
Turing machine that accepts x ∈ ΠY and always rejects x ∈ ΠN . That is, we do not care about instances

not in ΠY ∪ΠN .

10 CHAPTER 2. DEFINITIONS

2.3 Interactive Protocols

We define the notion of an interactive protocol, originally due to Goldwasser, Micali, and Rackoff [46].
Instead of formulating interaction in terms of interactive Turing machines, we adopt the more general for-
mulation using functions, noted by Goldwasser and Sipser [45]. That is, an interactive protocol is simply a
pair of functions sending messages to each other until one of the functions terminate. Formally,

Definition 2.3.1 (Interactive Protocols) An interactive protocol is a pair 〈P, V 〉 of functions. The interac-
tion between P and V on common input x is the following random process.

1. Let rP and rV be random inputs to P and V , respectively.

2. repeat the following for i = 1, 2, . . .

(a) If i is odd, let mi = P (x,m1, . . . ,mi−1; rP).

(b) If i is even, let mi = V (x,m1, . . . , mi−1; rV).

(c) If mi ∈ {accept,reject,fail}, then exit loop.

We say that V accepts x if mi = accept for an even i. Interactions yield transcripts 〈x,m1, . . . ,mp; rV 〉,
and we call the strings mi messages. The probability space containing all the transcripts is called the view
of V on x, and is denoted 〈P, V 〉(x). The round complexity of 〈P, V 〉 is a function p such that for any x,

and any interaction on input x, the number of messages exchanged is at most p(|x|). We say that 〈P, V 〉 is

constant round if p is a constant.

We say that 〈P, V 〉 is public coin if V always sends independent portions of rV , and its last message is

a deterministic function of the messages exchanged.

Now we can define interactive proofs [46]. Informally, a problem has an interactive proof if it has an
interactive protocol in which a common input x is given to the prover and the verifier, the verifier runs in time
polynomial in |x|, and it accepts if x is a YES instance, and rejects if x is a NO instance (the probabilities to
accept and reject are far by at least the reciprocal of a polynomial). Formally,

Definition 2.3.2 (Interactive proofs and arguments) Let Π = 〈ΠY ,ΠN 〉 be a problem, and let 〈P, V 〉 be

an interactive protocol. We say that 〈P, V 〉 is an interactive proof for Π if there is a, and c(n), s(n) : N →
[0, 1] such that 1− c(n) > s(n) + 1/na for any n, and the following conditions hold.

• Efficiency: V is a probabilistic Turing machine whose running time over the entire interaction is

polynomial in |x| (this implies that the number of messages exchanged is polynomial in |x|).

• Completeness: if x ∈ ΠY , then V accepts in 〈P, V 〉(x) with probability at least 1 − c(|x|). The

probability is over rP and rV (the randomness for P and V , respectively).

2.4. INDISTINGUISHABILITY 11

• Soundness: if x ∈ ΠN , then for any function P ∗ it holds that V accepts in 〈P ∗, V 〉(x) with probability

at most s(|x|). The probability is over the randomness rV for V .

If the soundness condition holds with respect to non-uniform polynomial-size circuits P ∗, then we say that

〈P, V 〉 is an interactive argument for Π.

The function c is the completeness error, and the function s is the soundness error. We say that 〈P, V 〉
has perfect completeness (respectively, perfect soundness) if c ≡ 0 (respectively, s ≡ 0).

We denote by IP the class of problems admitting interactive-proofs [46], and by AM the class of problems
admitting public-coin, constant-round interactive-proofs [6, 56].

Definition 2.3.3 (Efficient prover) Let 〈P, V 〉 be an interactive proof or argument for an NP problem Π =
〈ΠY ,ΠN 〉. We say that P is an efficient prover if given an arbitrary NP witness w for x ∈ ΠY the prover

runs in time polynomial in |x|.

2.4 Indistinguishability

The notion of zero-knowledge is based on indistinguishability between two ensembles: the output of the
simulator, and interactions between the prover and the verifier.

A probability ensemble is a sequence {Yx}x∈I of random variables, where I is countable set of strings.
Indistinguishability is defined in terms of distance between ensembles. A function f(n) is negligible if all of
its outputs are small when the inputs are large enough. Formally, f is negligible on I if for any polynomial
p there is N such that for all x ∈ I of length at least N it holds that f(|x|) < 1/p(|x|). When I is clear

from the context we simply say that f(n) is negligible.
We will consider three notions of indistinguishability: computational, statistical, and perfect. Computa-

tional indistinguishability is defined in terms of advantage of a distinguisher D. Given two distributions Yx

and Zx, and a circuit D whose output is 0 or 1, the advantage of D to distinguish Yx from Zx is defined as

adv(D,Yx, Zx) def= |Pr[D(Yx) = 1]− Pr[D(Zx) = 1]|,

where Pr[D(X) = 1] is the probability that D outputs 1 given an element chosen according to the distribu-
tion X . Notice that if D is probabilistic, then according to our convention this probability is also over the
uniform distribution on the randomness of D.

Statistical indistinguishability makes no reference to circuits. Given two discrete distributions X and Y ,
the statistical distance between them is

∆(X, Y) def= 1/2 ·
∑
α

|Pr[X = α]− Pr[Y = α]| = max
S

(|Pr[X ∈ S]− Pr[Y ∈ S]|).

The formal definition of the three notions of indistinguishability follows.

12 CHAPTER 2. DEFINITIONS

Definition 2.4.1 (Indistinguishability) Two probability ensembles {Yx}x∈I and {Zx}x∈I are computation-
ally indistinguishable if adv(D, Yx, Zx) is negligible on I for all non-uniform polynomial-size circuits D.

They are statistically identical (respectively, statistically indistinguishable) if ∆(Yx, Zx) is identically 0 (re-

spectively, negligible) on I .

Variants of the problem STATISTICAL-DISTANCE (SD) will play a central role in this thesis. This
problem originated from the study of SZK due to [77]. Its instances are pairs of circuits. As we remarked
in Section 2.1.1, we can treat circuits as distributions (using the convention that the inputs are uniformly
chosen) or as boolean functions. Instances of SD are statistically close as YES instances, and statistically
far as NO instances. Formally,

Definition 2.4.2 The problem SDα,β [77] is the pair 〈SDα
Y, SDβ

N〉, where

SDα
Y = {〈X0, X1〉|∆(X0, X1) ≤ α}, and

SDβ
N = {〈X0, X1〉|∆(X0, X1) ≥ β}, and

X0 and X1 are circuits (treated as distributions).

We remark that SD def= SD1/3,2/3 is SZK-complete, and since SZK is closed under complement [71, 77],
SD is also SZK-complete. In this thesis we are only interested in the NP problem SD0,β where β = 1 or
β ≥ 1/2 (or some other non-negligible constant).

2.5 Zero-Knowledge

Informally, an interactive proof (or an interactive argument) is zero-knowledge if there is a simulator such
that the view of the verifier and the output of the simulator are indistinguishable. To simplify the presentation
we chose a definition where the simulator is not allowed to fail. The relaxed definition (where the simulator
is allowed to fail with probability at most 1/2) requires that conditioned on not failing, the output of the
simulator be indistinguishable from the view of the verifier. Most of our results hold with respect to this

relaxed definition, and in fact our result from Section 4.4 shows that for the case of honest verifiers the two
notions are equivalent. We use SV to denote a Turing machine S with oracle access to Turing machine V .

Definition 2.5.1 (Zero-knowledge protocols) A protocol 〈P, V 〉 for a problem Π = 〈ΠY , ΠN 〉 is perfect
(respectively, statistical, computational) zero-knowledge if there is a probabilistic, polynomial-time Turing

machine S, called the simulator, such that for any probabilistic, polynomial-time Turing machine V ∗,

{〈P, V ∗〉(x)}x∈ΠY
and {SV ∗(x)}x∈ΠY

are statistically-identical (respectively, statistically indistinguishable, computationally indistinguishable.)

The class of problems admitting perfect (respectively, statistical, computational) zero-knowledge protocols

2.5. ZERO-KNOWLEDGE 13

is denoted PZK (respectively, SZK, CZK.) When the above ensembles are indistinguishable for V ∗ = V we

say that 〈P, V 〉 is honest-verifier, perfect (respectively, statistical, computational) zero-knowledge, and we

denote the respective classes by HVPZK,HVSZK, and HVCZK.

We remark that the above definition allows S only oracle access to the V ∗. That is, for any input q

the simulator can evaluate V ∗(q) in one step, and it does not have access to the Turing machine describing
V ∗. This notion is known as black-box simulation (as opposed to non-black-box simulation, where S can
also read the Turing machine describing V ∗) [39, 7]. Another notion of zero-knowledge considers V ∗ with
an auxiliary input, which is useful in cases where the zero-knowledge protocol is executed within another
protocol, and the verifier have more initial information than only the common input. Clearly, in such case
the simulator is also allowed to use the auxiliary input.

We also remark that the literature has observed a technical issue with Definition 2.5.1. Specifically, the
simulator runs in polynomial time (for a fixed polynomial), but it needs to choose random tapes for verifiers
V ∗, each of whom runs in time described by an arbitrary polynomial. In other words, the simulator may not
have enough time to write down the random string. Although this would not make a difference in this thesis,
for the sake of formality we adopt the approach that swaps the quantifiers in Definition 2.5.1. That is, we
require that for any verifier V ∗ there is a simulator S that simulates the interaction between P and V ∗.

Chapter 3

Non-interactive Instance-Dependent
Commitment Schemes

When Goldwasser, Micali, and Rackoff [46] introduced the concept of zero-knowledge, they also gave
the first example of a language that unconditionally admits a zero-knowledge proof. Namely, the perfect
zero-knowledge (PZK) proof for QUADRATIC-RESIDUOUSITY. Subsequently, GRAPH-ISOMORPHISM

was shown to have a PZK proof [41], and this was later generalized to all random self-reducible (RSR)
languages [4], and monotone boolean formulae over RSR languages [79].

Although each of these problems has its own PZK proof, the proofs themselves have the same struc-
ture. That is, three messages are exchanged, and the message of the verifier (i.e., the second message) is a
randomly chosen bit. We call such protocols V-bit protocols.1 What is interesting about these protocols is
that all the known problems admitting PZK proofs have the structure of a V -bit protocol. For example, the
problem SD0,1 mentioned in Chapter 2.1, and the language DISCRETE-LOGARITHM [4]. Thus, a natural
question that follows is whether this fact can be useful for studying the entire class of known problems
admitting PZK proofs (instead of studying each problem individually).

In this chapter we show that indeed, all the known problems admitting PZK proofs can be studied
through non-interactive, instance-dependent commitment schemes (NIC). We achieve this result by using
the technique of Damgård [29] to construct NIC from V -bit zero-knowledge protocols, and by using the idea
of Itoh, Ohta and Shizuya [50] to obtain V -bit zero-knowledge protocols from NIC. This characterization
of V -bit zero-knowledge protocols as NIC applies also to the statistical and the computational settings.
Thus, although we are interested in PZK, our discussion will be general, and will include statistical and
computational zero-knowledge (SZK and CZK, respectively) proofs.

Next, we use the technique of De Santis, Di Crescenzo, Persiano, and Yung [79], to show that NIC
can be combined in a monotone boolean formula fashion (i.e., with AND and OR connectives). Combining

1The notions of V -bit protocols and Σ-protocols [26] are similar in that both refer to 3-round protocols, but different in that
V -bit protocols make no reference to zero-knowledge or special soundness. However, it will later follow from our results that a
problem admits a V -bit zero-knowledge proof if and only if it admits a Σ-protocol.

14

15

this with our characterization result, we obtain what we call the NIC framework. This framework allows
us to study all the known languages admitting PZK proofs. Since it also applies to the statistical and the
computational settings, we strengthen and unify many previous results.

3.0.1 Motivation

Much of the study of zero-knowledge protocols relies on the existence of bit commitment schemes (equiv-
alently, one-way functions [49, 67]). Intuitively, commitment schemes allow a sender to commit to a bit b

such that the receiver cannot learn b from the commitment (this property is called hiding), and at the same
time the sender cannot change the commitment to another value (this property is called binding).

Itoh, Ohta and Shizuya [50] suggested an alternative approach to commitment schemes. They observed
that in the protocol of [41] for NP the scheme should be hiding when the input is a YES instance and binding
when it is a NO instance, but the hiding and the binding properties do not need to hold simultaneously. Using
this observation, they constructed such a scheme for specific languages such as GRAPH-ISOMORPHISM and
QUADRATIC-RESIDUOUSITY. By using the scheme (instead of a bit commitment scheme) in the protocol
of Blum [15] for NP, they obtained perfect zero-knowledge (PZK) proofs with efficient provers for these

languages (different proofs for these languages were known before [46, 41, 84]).
The schemes of [50] are different from commitment schemes because they also take an instance x of

a problem as an input, and the hiding and the binding properties depend on whether x is a YES or a NO
instance. For example, the problem SD0,1, discussed in Section 2.1 and defined in Section 2.4, has such
a scheme [63]. Namely, given a pair of circuits 〈X0, X1〉 as an instance, a commitment to a bit b can be
computed by choosing a random string r and outputting y = Xb(r). Thus, if X0 and X1 represent the
same distribution, then y perfectly hides b, and if they are disjoint, then y cannot be a commitment to both
0 and 1, and hence y binds to b. We call such a scheme a non-interactive instance-dependent commitment

scheme (NIC). The term non-interactive means that only one message is sent by the sender (i.e., the receiver
does not send anything), and the term instance-dependent means that the hiding and the binding properties
depend on the instance x. The approach of instance-dependent commitment schemes turned out to be very
successful in the study of zero-knowledge protocols ([50, 63, 62, 70, 69, 51, 72, 73, 23]).

3.0.2 Main Results

Using the technique of [29] we show that if a problem has a V -bit zero-knowledge protocol, then it has a
non-interactive instance-dependent commitment scheme (NIC). Using the technique of [50] we then prove
that the opposite is also true. Our result applies not only to the perfect setting, but also to the statistical
and the computational settings. This shows a tight relation between two natural but restrictive types of
commitment schemes and zero-knowledge protocols.

Theorem 3.0.2 A promise-problem Π has a V-bit HVPZK (respectively, SZK) proof if and only if Π has a

perfectly (respectively, statistically) hiding NIC. Similarly, Π has a V-bit CZK proof if and only if Π ∈ NP

16 CHAPTER 3. NON-INTERACTIVE INSTANCE-DEPENDENT COMMITMENT SCHEMES

and Π has a computationally hiding NIC.

In addition to our theorem, we prove two lemmas. The first lemma proves that any random self-
reducible [4] (RSR) problem has a perfectly hiding NIC. This folklore lemma follows from [84, 79],
but here we provide the proof for completeness. The second lemma uses the technique of [79] to show that
NIC can be combined in a monotone boolean formula fashion (i.e., with AND and OR connectives). Together
with our theorem, these lemmas yields a useful framework that enables us to achieve unconditional results
about various zero-knowledge protocols.

3.0.3 Organization

Our main theorem is proved in Section 3.2, and our proof for random-self reducible languages is given in

Section 3.3. The closure result is in Section 3.4, and the consequences of our framework are summarized in
Section 3.5. We start with the definition of NIC.

3.1 Non-interactive, Instance-Dependent Commitment-Schemes (NIC)

In this section we define the notion of a non-interactive instance-dependent commitment schemes (NIC).
To motivate the notion of a NIC we start with the familiar notion of a non-interactive bit commitment

scheme. Intuitively, such a scheme allows a sender to commit to a bit b such that the receiver cannot learn
the value of b, yet the sender cannot change b. More precisely, the scheme is an efficient function f(b; r),
and to commit to b the sender chooses randomness r, computes y = f(b; r), and sends y to the receiver.
This is the commit phase. In the reveal phase the sender sends b and r to the receiver, who computes f(b; r),
thus confirming that y is indeed a commitment to b. The receiver does not send anything (hence the term
non-interactive). The scheme is hiding if b cannot be determined from y, and binding if y binds the sender
to b (that is, f(0; r) 6= f(1; r′) for any r 6= r′).2

Intuitively, a NIC for a problem Π is a non-interactive commitment scheme where the hiding and the
binding properties depend on instances of Π, and may not hold simultaneously. That is, instead of f(b; r) we
consider f(x, b; r), and the hiding and binding properties depend on whether x is a YES or a NO instance of
Π. The following definition is identical to the positively opaque and negatively transparent scheme of [50],
and as was observed in [62], we can generalize it to the statistical and the computational settings.

Definition 3.1.1 (NIC) Let Π = 〈ΠY, ΠN〉 be a promise-problem, and let f(x, b; r) be a probabilistic Tur-

ing machine running in time polynomial in |x|. The inputs to f are a string x (denoting an instance of Π), a

bit b, and a string r (denoting the randomness of f).

We say that f is binding on ΠN if for any x ∈ ΠN, and for any r and r′ it holds that f(x, 0; r) 6=
f(x, 1; r′). We say that f is perfectly (respectively, statistically, computationally) hiding on ΠY if the

2The notion of interactive commitment schemes is similar, except that the sender and the receiver can interact. Both notions are
useful in the study of zero-knowledge protocols, but non-interactive schemes are more convenient to work with.

3.1. NON-INTERACTIVE, INSTANCE-DEPENDENT COMMITMENT-SCHEMES (NIC) 17

ensembles {f(x, 0)}x∈ΠY
and {f(x, 1)}x∈ΠY

are statistically identical (respectively, statistically indistin-

guishable, computationally indistinguishable), where f(x, b) is a random variable obtained by uniformly

choosing r, and outputting f(x, b; r).

We say that f is a perfectly (respectively, statistically, computationally) hiding NIC for Π if f is binding

on ΠN, and perfectly (respectively, statistically, computationally) hiding on ΠY.

Perfectly and statistically hiding NIC are different from computationally hiding NIC. Firstly, in a per-
fectly or a statistically hiding NIC the hiding and the binding properties cannot hold at the same time,
whereas in a computationally hiding NIC they may [50, 39]. Secondly, if Π has a perfectly or a statistically
hiding NIC f , then as a class of problems NP contains Π. This is so because if x ∈ ΠY, then there is a
pair 〈r, r′〉 such that f(x, 0; r) = f(x, 1; r), and if x ∈ ΠN, then no such pair exists. However, Π may not
be in NP if f is computationally hiding. Finally, as was observed by [50], if a problem has a statistically

hiding NIC, then it cannot be NP-complete, unless the polynomial hierarchy collapses [37, 3, 18]. We give
an example of a NIC.

Example 3.1.2 A NIC for the language GRAPH-ISOMORPHISM [12, 50]. Let f(x, b; r) be a function that

given a pair of graphs x = 〈G0, G1〉 on n vertices uses r to define a random permutation π over {1, . . . , n},

and outputs y = π(Gb). If the graphs are isomorphic, then y is isomorphic to both G0 and G1, and b cannot

be determined from y. Conversely, if the graphs are not isomorphic, then y cannot be isomorphic to both

G0 and G1. Thus, f is a perfectly hiding NIC for GRAPH-ISOMORPHISM.

Another example is the statistically hiding NIC of [63] for SD1/2,1. Recall that by Definition 2.4.2,
instances of SD1/2,1 are pairs of circuits 〈X0, X1〉 treated as distributions (under the convention that the
input to the circuit is uniformly distributed). The statistical distance between X0 and X1 is 1/2 for YES
instances, and 1 for NO instances. Notice that statistical distance of 1 means that X0(r) 6= X1(r′) for any
r and r′. Also, by taking many samples from each circuit, we obtain a new pair of circuits such that if X0

and X1 are disjoint, then so is the new pair, and if the the statistical distance between X0 and X1 is 1/2,

then the statistical distance between the circuits in the new pair is 1/2n, where n = |X0| (this, and another
polarization technique can be found in [77]). Hence, SD1/2,1 defines a statistically hiding NIC: to commit
to b we uniformly choose r and output Xb(r).

In fact, the notion of a NIC is very close to the problem SD. For example, if f is a perfectly hiding
NIC, then 〈f(x, 0), f(x, 1)〉 is a pair of circuits with statistical distance 0 when x is a YES instance, and
statistical distance 1 when x is a NO instance. Thus, another way to look at our main result is that SD0,1

is complete for the class of problems admitting perfectly hiding NIC (equivalently, the class of problems
admitting V -bit perfect zero-knowledge proofs). However, notice that the random input for the NIC for
GRAPH-ISOMORPHISM is a permutation, and there n! such inputs. Thus, unless n! is a power of 2, this
randomness cannot be represented by a bit string, which means that GRAPH-ISOMORPHISM is not known

to be reducible to SD0,1.

18 CHAPTER 3. NON-INTERACTIVE INSTANCE-DEPENDENT COMMITMENT SCHEMES

3.2 Characterizing V-bit Zero-Knowledge Protocols

In this section we introduce the notion of V-bit protocols and prove Theorem 3.0.2. We only consider proofs,
but our result also applies to arguments, in which case it yields NIC where the binding property holds with
respect to computationally bounded senders.

Examples of V -bit protocols include the protocol of [77] for SD0,1, discussed in Section 2.1, the protocol
of [41] for GRAPH-ISOMORPHISM, and the protocols of [15, 41] for NP. These protocols are public-coin,
they have perfect completeness, and they admit the following structure: the prover sends the first message
m1, the verifier sends back a random bit b, the prover replies with a message m2, and the verifier accepts or
rejects. Since V sends only one bit, we call these protocols V-bit protocols. Formally,

Definition 3.2.1 (V-bit protocol) Let 〈P, V 〉 be a proof or an argument for a problem Π = 〈ΠY, ΠN〉. We

say that 〈P, V 〉 is V-bit if for any x ∈ ΠY the interaction between P and V is as follows: P sends m1 to

V , and V replies with a uniformly chosen bit b. P replies by sending m2 to V , and V accepts or rejects x

based on 〈x, m1, b, m2〉. If x ∈ ΠY , then V always accepts.

We do not know if any V -bit zero-knowledge protocol is also a Σ-protocol. However, from our charac-
terization result it will follow that a problem admits a V -bit zero-knowledge proof if and only if it admits a

Σ-protocol. This will be discussed in more detail in Section 3.5.1.

3.2.1 From NIC to V -bit Zero-Knowledge Protocols

We show that if a problem has a NIC, then it has a V -bit zero-knowledge protocol. The proof is standard,
and follows easily by plugging the NIC into the zero-knowledge protocols for NP [15, 41], as in [50].

Lemma 3.2.2 If a problem Π has a perfectly (respectively, statistically) hiding NIC, then Π has a public-

coin HVPZK (respectively, SZK) V -bit proof with an efficient prover. If Π ∈ NP, and Π has a computa-

tionally hiding NIC, then Π has a public-coin CZK V -bit proof with an efficient prover.

Proof:(sketch) Recall that if a problem has a perfectly or a statistically hiding NIC, then it is contained in
NP. Thus, we can use the zero-knowledge protocol of [15] for the NP-complete problem HAMILTONIAN-
CIRUIT (HC). Specifically, given input x ∈ ΠY ∪ ΠN , the prover and the verifier initially reduce x to an
instance G of HC, and then execute the protocol of [15] using the NIC f for Π as a bit commitment scheme.

This protocol can be informally described as follows:

• The prover picks a random permutation π. Let A be the matrix representing the graph π(G). The
prover sends commitments to all the entries of A.

• The verifier replies with a random bit b.

• If b = 0, then the prover opens all the commitments. It also sends π. If b = 1, then the prover only

opens the entries of A representing a Hamiltonian circuit in π(G).

3.2. CHARACTERIZING V-BIT ZERO-KNOWLEDGE PROTOCOLS 19

• The verifier accepts only if the reply of the prover is correct.

Perfect completeness follows from the fact that if x ∈ ΠY, then G has a Hamiltonian circuit, and hence
the verifier always accepts. Thus, the protocol is V -bit. The prover is efficient because the NIC is efficient,
and the witness for x can be efficiently transformed into a witness for G or π(G). The protocol is sound
because when x ∈ ΠN the scheme is binding and G does not have a Hamiltonian circuit. This implies that

the verifier rejects with probability 1/2.

The zero-knowledge property follows from the hiding property of the NIC. Specifically, in the perfect
setting the verifier is honest, and if b = 0, then the simulator commits to π(G), where π is a random
permutation. If b = 1, then it commits to the matrix whose entries are all 1. This guarantees perfect
simulation. Notice that if we allow the simulator to fail, then it can choose either one of these options with
probability 1/2, and achieve perfect simulation even for malicious verifiers. The same simulator applies also
to the statistical and the computational settings, even if we do not allow the simulator to fail (specifically,
we execute the simulator |x| times, and output the first transcript, or fail if all executions failed, which
happens with probability at most 1/2|x|).

In the next section we will show that if a problem has a V -bit zero-knowledge proof, then it has a
NIC. Hence, the above lemma yields a compiler that transforms any V-bit, zero-knowledge proof (i.e.,
honest-verifier, inefficient prover) into a malicious verifier V -bit zero-knowledge proof of knowledge with
an efficient prover. To achieve this, the compiler constructs the NIC for the V-bit zero-knowledge protocol,
and then uses it in the V-bit protocol of Blum [15], which has an efficient prover, and is zero-knowledge
against malicious verifiers.

3.2.2 From V -bit Zero-Knowledge Protocols to NIC

Using the idea of [29] we now show how to construct a NIC from a simulator S for any V-bit zero-
knowledge protocol 〈P, V 〉. We start with the following idea: to commit to a bit b, execute S(x) using
randomness r, obtain a transcript 〈m1, b

′,m2〉 such that b = b′ and V accepts, and output m1 as a com-
mitment. Let us verify that this NIC is hiding on YES instances and binding on NO instances. If x is a
YES instance, then the perfect completeness property guarantees that we always obtain transcripts where
V accepts, and since b cannot be determined from such m1, the commitment is hiding. Conversely, by the
soundness property, if x is a NO instance, then there are no transcripts 〈m1, 0, m2〉 and 〈m1, 1,m′

2〉 such that
V accepts in both. However, the issue with this idea is that b′ may not be equal to b. To overcome this issue
we redefine the commitment to be 〈m1, b

′ ⊕ b〉. That is, we execute S(x), obtain 〈m1, b
′,m2〉, and output

〈m1, b
′ ⊕ b〉. Intuitively, since b′ is hidden, the bit b′ ⊕ b is also hidden. Our lemma follows.

Lemma 3.2.3 Let Π = 〈ΠY,ΠN〉 be a promise-problem. If Π has a V-bit, public-coin HVPZK (respec-

tively, HVSZK, HVCZK) proof, then Π has a NIC that is perfectly (respectively, statistically, computation-

ally) hiding on ΠY and perfectly binding on ΠN.

20 CHAPTER 3. NON-INTERACTIVE INSTANCE-DEPENDENT COMMITMENT SCHEMES

Proof: Fix a public-coin V-bit HVPZK (respectively, HVSZK, HVCZK) proof 〈P, V 〉 for Π. We assume
that 〈P, V 〉 has a simulator S that outputs either fail, or transcripts in which V accepts. Using S we define
a NIC f for Π as follows. Let f(x, b; r) be the function that executes S(x) with randomness r. If f obtains
a transcript 〈x, m′

1, b
′,m′

2〉 such that V (x, m′
1, b

′,m′
2) = accept, then f outputs 〈m′

1, b
′ ⊕ b〉. Otherwise,

f outputs b.

We show that f is binding on ΠN. Let x ∈ ΠN. Notice that for any r and b it holds that f(x, b; r)
outputs one bit if and only if f(x, b; r) = b. Thus, if f outputs one bit, then there are no r and r′ such that
f(x, 0; r) = f(x, 1; r′). For the case where f(x, b; r) outputs a pair 〈m̃1, b̃〉, recall that b̃ = b′ ⊕ b, where b′

is taken from some transcript 〈x,m′
1, b

′,m′
2〉. Thus, by the definition of f , for any m̃1, b̃, r and r′ it holds

that f(x, 0; r) = f(x, 1; r′) = 〈m̃1, b̃〉 if and only if there are m2 and m′
2 and such that V (x, m̃1, 0,m2) =

V (x, m̃1, 1, m′
2) = accept. However, 〈P, V 〉 is public coin, and by the soundness property of 〈P, V 〉 there

are no m1,m2 and m′
2 such that V (x,m1, 0,m2) = V (x,m1, 1, m′

2) = accept. Hence, if f does not
output one bit, then there are no r and r′ such that f(x, 0; r) = f(x, 1; r′). We conclude that f is perfectly
binding on ΠN.

The rest of the proof shows that f is hiding on ΠY. We start with the statistical setting. To show that f is
statistically hiding we need to calculate the statistical distance between commitments to 0 and commitments

to 1 over x ∈ ΠY. The following probabilities are over the randomness r for f .

∆(f(x, 0), f(x, 1)) =
1
2

∑
α

|Pr[f(x, 0) = α]− Pr[f(x, 1) = α]|

=
1
2

∑
m1

|Pr[f(x, 0) = 〈m1, 0〉]− Pr[f(x, 1) = 〈m1, 0〉]|+

1
2

∑
m1

|Pr[f(x, 0) = 〈m1, 1〉]− Pr[f(x, 1) = 〈m1, 1〉]|+

1
2

∑

b∈{0,1}
|Pr[f(x, 0) = b]− Pr[f(x, 1) = b]| .

Notice that the third sum (i.e., the sum over b) equals Pr[S(x) = fail], the probability that S fails.
Now, by Definition 2.5.1 of zero-knowledge, when S is a HVPZK simulator it never fails. Thus, Pr[S(x) =
fail] = 0. It remains to deal with the sums over m1. We show that the first sum is upper bounded by
∆(〈P, V 〉(x), S(x)) − Pr[S(x) = fail]/2, and since a symmetric argument applies to the second sum,

the total will be upper bounded by 2 · ∆(〈P, V 〉(x), S(x)). The following probabilities for 〈P, V 〉(x) and

3.2. CHARACTERIZING V-BIT ZERO-KNOWLEDGE PROTOCOLS 21

S(x) are over the randomness to P, V and S, respectively.

1
2

∑
m1

|Pr[f(x, 0) = 〈m1, 0〉]− Pr[f(x, 1) = 〈m1, 0〉]| =
1
2

∑
m1

|
∑
m2

Pr[S(x) = 〈m1, 0,m2〉]−
∑
m2

Pr[S(x) = 〈m1, 1,m2〉]| =

1
2

∑
m1

|
∑
m2

Pr[S(x) = 〈m1, 0,m2〉]−
∑
m2

Pr[〈P, V 〉(x) = 〈m1, 0, m2〉]

−(
∑
m2

Pr[S(x) = 〈m1, 1,m2〉]−
∑
m2

Pr[〈P, V 〉(x) = 〈m1, 1,m2〉])| ≤

1
2

∑
m1,m2

(|Pr[S(x) = 〈m1, 0,m2〉]− Pr[〈P, V 〉(x) = 〈m1, 0,m2〉]|+
|Pr[S(x) = 〈m1, 1,m2〉]− Pr[〈P, V 〉(x) = 〈m1, 1,m2〉]|) =

∆(〈P, V 〉(x), S(x))− Pr[S(x) = fail]/2 .

In the first equality above we used the fact that S outputs transcripts in which V accepts. In the second equal-
ity we used the fact that 〈P, V 〉 is public-coin, which implies that for any m1 the probability of choosing an
element of 〈P, V 〉(x) whose prefix is 〈m1, 0〉 equals the probability of choosing an element of 〈P, V 〉(x)
whose prefix is 〈m1, 1〉. In the last equality we used the fact that 〈P, V 〉(x) never outputs fail, whereas
S(x) outputs fail with probability Pr[S(x) = fail]. We conclude that ∆(f(x, 0), f(x, 1)) ≤ 2 ·
∆(S(x), 〈P, V 〉(x)). Hence, if S is a HVPZK (respectively, HVSZK) simulator, then ∆(S(x), 〈P, V 〉(x))
is 0 for any x ∈ ΠY (respectively, negligible on ΠY), which implies that f is perfectly (respectively, statis-
tically) hiding on ΠY.

It remains to deal with the case that S is a HVCZK simulator. The analysis is analogues to the statistical
setting, but in reverse. We define the function f ′(·, b) just like f , except that instead of executing the
simulator, f ′ receives a transcript 〈m1, b

′,m2〉 and outputs 〈m1, b
′ ⊕ b〉. Thus, f ′(S(x), b) and f(x, b) are

identically distributed for any b ∈ {0, 1}. Assume towards a contradiction that there is a non-uniform family
D of polynomial-size circuits that distinguishes {f(x, 0)}x∈ΠY

and {f(x, 1)}x∈ΠY
. Thus, D distinguishes

{f ′(S(x), 0)}x∈ΠY
and {f ′(S(x), 1)}x∈ΠY

, and the following expression is non-negligible:

|Pr[D(f ′(S(x), 0)) = 1]− Pr[D(f ′(S(x), 1)) = 1]| ≤
|Pr[D(f ′(S(x), 0)) = 1]− Pr[D(f ′(〈P, V 〉(x), 0)) = 1]|+
|Pr[D(f ′(S(x), 1)) = 1]− Pr[D(f ′(〈P, V 〉(x), 1)) = 1]| .

Above we used the fact that 〈P, V 〉 is V-bit, which implies that f ′(〈P, V 〉(x), 0) and f ′(〈P, V 〉(x), 1) are
identically distributed for any x ∈ ΠY. It follows that there is b ∈ {0, 1} such that D distinguishes
{f ′(〈P, V 〉, b)}x∈ΠY

and {f ′(S(x), b)}x∈ΠY
. This contradicts the fact that S is a HVCZK simulator. We

conclude that f is computationally hiding on ΠY. The lemma follows.

22 CHAPTER 3. NON-INTERACTIVE INSTANCE-DEPENDENT COMMITMENT SCHEMES

Theorem 3.0.2 immediately follows from Lemmas 3.2.2 and 3.2.3. Thus, we get a characterization of
V-bit zero-knowledge protocols as NIC. We remark that Theorem 3.0.2 can be extended to arguments,
in which case it yields NIC where the binding property holds with respect to computationally bounded
senders. Also, it can be extended to relaxed notions of V -bit protocols (e.g., where perfect completeness or
public-coins are not required), but we avoid these extensions because they require changing the definition
of a NIC.

3.3 Random Self-Reducibility Implies NIC

We prove the folklore theorem that if a problem is random self-reducible (RSR), then it has a perfectly
hiding NIC. The advantage of this result is that it enables us to replace the notion of random-self reducibility
with the simpler notion of a NIC. For example, in our closure result we can combine RSR problems with

problems that are not known to be RSR (such as versions of SD, and the lattice problems of [63]). Hence,
we are able to strengthen and unify the results of [84, 79, 50], and achieve all the improvements claimed in
the introduction.

Informally, the notion of random self-reducibility [4] considers a set of strings x, each associated with
a polynomial-time relation Rx on pairs 〈z, w〉. Given x and z, there is an algorithm S uses randomness r

to sample the domain of Rx. Specifically, if z ∈ Rx, then S outputs y such that 〈y, w′〉 ∈ Rx for some w′.
For example, in the case of GRAPH-ISOMORPHISM the string x is a graph G, and d(RG) contains all the
graphs G′ isomorphic to G. Given G and G′, the algorithm S picks a random permutation π and outputs
G′′ = π(G′), which is uniformly distributed in RG.

Two algorithms are at the heart of the notion of random self-reducibility: A1, which converts a witness
for y into a witness for z, and A2, which converts witness for z into a witness for y. Both A1 and A2 use r.
Also, there is an algorithm G that generates random pairs 〈z′, w′〉 from Rx. All of the algorithms are efficient.
Again, using GRAPH-ISOMORPHISM as an example, if π′ is a witness for G′′ (that is, π′(G′′) = G),
then A1(G, G′′, π, π′′) = π′ ◦ π (because π′(π(G′)) = G). Similarly, if π′′ is a witness for G′ (that is,
π′′(G′) = G), then A2(G,G′, π, π′′) = π′′ ◦ π−1 (because π′′(π−1(G′′)) = G). The algorithm G simply
outputs a random permutation of G. The following definition is similar to that of [79].

Definition 3.3.1 (A random self-reducible problem) Let p be a polynomial, and let N ⊂ {0, 1}∗ be a

countable set such that for each x ∈ N it holds that Rx is an NP-relation, and the domain of Rx, which

is denoted d(Rx) def= {z|∃w 〈z, w〉 ∈ Rx}, satisfies |d(Rx)| ≤ p(|x|). The language L def= {〈x, z〉|x ∈
N ,∃w 〈z, w〉 ∈ Rx} is random self-reducible (RSR) if there are polynomial time algorithms G, A1, A2,

and S such that S(x, z; r) = y ∈ d(Rx) for any x ∈ N , z, and r, and the following conditions hold.

1. If z ∈ d(Rx), and r is uniformly distributed, then y is uniformly distributed in d(Rx).

2. A witness for y yields a witness for z, and vice versa. That is, 〈z, A1(x, y, r, w′)〉 ∈ Rx for any

〈y, w′〉 ∈ Rx, and 〈y,A2(x, z, r, w′′)〉 ∈ Rx for any 〈z, w′′〉 ∈ Rx.

3.4. CLOSURE OF PROBLEMS POSSESSING NIC UNDER MONOTONE BOOLEAN FORMULAE23

3. G(x; r) = 〈z′, w′〉 ∈ Rx, and if r is uniformly distributed, then z′ is uniformly distributed in d(Rx),
and w′ is uniformly distributed in {w|〈z, w〉 ∈ Rx}.

We prove that random self-reducible problems have a perfectly hiding NIC. Our proof uses the idea
behind the construction of the subroutine in the protocol of [79] (see Section 3.3 in [79]). GivenN and Rx as
in Definition 3.3.1, we define the problem ΠL def= 〈ΠL

Y,ΠL
N〉, where ΠL

Y
def= {〈x, z〉|x ∈ N ,∃w 〈z, w〉 ∈ Rx},

and ΠL
N

def= {〈x, z〉|x ∈ N , ∀w 〈z, w〉 /∈ Rx}.

Lemma 3.3.2 If L is a random self-reducible language, then ΠL has a perfectly hiding NIC.

Proof: Let L def= {〈x, z〉|x ∈ N , ∃w 〈z, w〉 ∈ Rx} be a random self-reducible language. Consider the
algorithms S and G from Definition 3.3.1. Let G′(x; r) be the algorithm that executes G(x; r), obtains
〈z′, w′〉, and outputs z′. We use S and G′ to commit to 0 and 1, respectively. Formally, we define our NIC
to be a probabilistic polynomial-time Turing machine f(x, z, b; r) that on input 〈x, z〉 ∈ ΠL

Y ∪ΠL
N, bit b,

and randomness r outputs S(x, z; r) if b = 0, and G′(x; r) if b = 1.
The efficiency of f follows from the efficiency of S and G. We show that f is perfectly hiding. By

Definition 3.3.1, S(x, z; r) = y is uniformly distributed over d(Rx) when r is uniformly distributed and
〈x, z〉 ∈ ΠL

Y. Similarly, G(x; r) = 〈z′, w′〉 and z′ is uniformly distributed over d(Rx) when r is uniformly
distributed and x ∈ N . Since the output of f is uniformly distributed over d(Rx) for any b and 〈x, z〉 ∈ ΠL

Y,
the ensembles {f(x, z, 0; r)}〈x,z〉∈ΠL

Y
and {f(x, z, 1; r)}〈x,z〉∈ΠL

Y
are statistically identical, and therefore f

is perfectly hiding on ΠL
Y.

We show that f is binding on ΠL
N. Let 〈x, z〉 ∈ ΠL

N. Assume towards a contradiction that there are r

and r′ such that S(x, z; r) = f(x, z, 0; r) = f(x, z, 1; r′) = G′(x; r′), and denote y = S(x, z; r). By the
definition of G′, there is w′ such that G(x; r′) = 〈G′(x; r′), w′〉 = 〈y, w′〉 ∈ Rx. By the property of A1

from Definition 3.3.1, it follows that 〈z, A1(x, y, r, w′)〉 ∈ Rx. Hence, 〈x, z〉 ∈ ΠL
Y, in contradiction to the

choice of 〈x, z〉 ∈ ΠL
N. Thus, f is binding on ΠL

N.

Notice that in the above proof we did not use Algorithm A2 from Definition 3.3.1. Neither did we use
the fact that A1 runs in polynomial time, nor did we use the witness that G outputs.

3.4 Closure of Problems Possessing NIC under Monotone Boolean Formu-
lae

In this section we show that the class of problems possessing NIC is closed under arbitrary (as opposed
to fixed) monotone boolean formulae. Combining this lemma with our previous results yields the NIC
framework and its consequences. We start with notation, and formalize our theorem in Section 3.4.1

Intuitively, our goal is to obtain a V -bit zero-knowledge protocol where statements about instances from
several problems are being proved. For example, the input may be an instance of GRAPH-ISOMORPHISM

and an instance of the lattice problems of [63], and the prover will prove that at least one of these instances

24 CHAPTER 3. NON-INTERACTIVE INSTANCE-DEPENDENT COMMITMENT SCHEMES

is a YES instance. More generally, the input is a vector 〈ϕ, 〈x1, . . . , xn〉〉, where ϕ is a monotone boolean
formula and x1, . . . , xn are instances of a problem Π, and the statement being proved is that x1, . . . , xn

satisfy ϕ. We remark that the xi can be from different problems, but to simplify the presentation we use
only one problem.

To formalize the above intuition we need the following definitions. A boolean variable is a variable that
can only take the values 0 or 1. We say that φ is a monotone boolean formula if φ is a boolean variable, or φ

is of the form φ0 ∧ φ1 or φ0 ∨ φ1, where both φ0 and φ1 are monotone boolean formulae. Given a problem
Π = 〈ΠY, ΠN〉 and x ∈ ΠY ∪ ΠN, we define the characteristic function χΠ of Π as follows: if x ∈ ΠY,

then χΠ(x) = 1, and if x ∈ ΠN, then χΠ(x) = 0. Let φ be a boolean formula over a1, . . . , am, and let
x1, . . . , xn ∈ ΠY ∪ ΠN for some n ≥ m. The evaluation of φ in ~x = 〈x1, . . . , xn〉 is denoted φ(~x), and
equals 1 if and only if φ is satisfied when ai is assigned χΠ(xi) for each 1 ≤ i ≤ m.

We say that a class C of problems is closed under arbitrary, monotone boolean formulae if Π ∈ C

implies that Φ(Π) ∈ C, where Φ(Π) is defined as follows.

Definition 3.4.1 Let Π = 〈ΠY, ΠN〉 be a problem. The problem Φ(Π) def= 〈Φ(Π)Y,Φ(Π)N〉 is defined as

Φ(Π)Y
def= {〈φ, x1, . . . , xn〉|φ(χΠ(x1), . . . , χΠ(xn)) = 1}

Φ(Π)N
def= {〈φ, x1, . . . , xn〉|φ(χΠ(x1), . . . , χΠ(xn)) = 0},

where φ is a monotone boolean formula over a1, . . . , am such that m ≤ n, and xi ∈ ΠY ∪ ΠN for all

1 ≤ i ≤ n. We define Φ(Π)k def= 〈Φ(Π)kY,Φ(Π)N〉, where Φ(Π)kY is defined as

Φ(Π)kY
def= {〈φ, x1, . . . , xn〉|φ(χΠ(x1), . . . , χΠ(xn)) = 1 ∧ ∀i |xi|k ≥ |φ, x1, . . . , xn|}.

3.4.1 The Closure Result - How to Combine NIC in a Monotone Boolean Formula Fashion

Our closure result states that if a problem Π has a NIC, then the problem Φ(Π) also has a NIC. Conse-
quently, we get that the class of problems possessing NIC (equivalently, V -bit zero-knowledge proofs) is
closed under arbitrary, monotone boolean formulae. Notice that this s stronger than saying that the class of
problems admitting NIC is closed under the AND and the OR operators.

Theorem 3.4.2 For any problem Π that has a NIC f , and for any k ∈ N, there is a NIC f ′ such that

1. if f is a perfectly hiding NIC for Π, then f ′ is a perfectly hiding NIC for Φ(Π).

2. if f is a statistically (respectively, computationally) hiding NIC for Π, then f ′ is a statistically (re-

spectively, computationally) hiding NIC for Φ(Π)k.

We will prove the above theorem by constructing a new NIC for Φ(Π) from the NIC for Π. The
advantage of this approach is that we do not need to work with involved notions such as interaction or

zero-knowledge. Also, by using the formulation of Φ(Π), we obtain a protocol that works for any formula.

3.4. CLOSURE OF PROBLEMS POSSESSING NIC UNDER MONOTONE BOOLEAN FORMULAE25

Using the technique of [79] we construct NIC as follows. If f is a NIC for Π, then a NIC for instances
of the form z = 〈a ∧ b, x1, x2〉 can be defined by f ′(z, b; r) = 〈f(x1, b), f(x2, b)〉. Thus, if both x1 and x2

are YES instances of Π, then f ′ is hiding (because both f(x1, b) and f(x2, b) are hiding), and if x1 or x2 is
a NO instance, then f ′ is binding (because at least one of f(x1, b) and f(x2, b) is binding). Notice that we
omitted the randomness for f , but the intention is that f ′ uses independent randomness in each execution.
A similar idea applies to the OR connector. That is, a NIC for instances of the form z = 〈a ∨ b, x1, x2〉
can be defined by f ′(z, b; r) = 〈f(x1, b1), f(x2, b2)〉, where b1 is uniformly chosen, and b2 is chosen such
that b1 ⊕ b2 = b. Thus, if at least one of x1, x2 is a YES instance of Π, then f ′ is hiding (because either

f(x1, b1) or f(x2, b2) is hiding), and if both x1 and x2 are NO instances, then f ′ is binding (because both
f(x1, b1) and f(x2, b2) are binding). The following construction generalizes these ideas to any monotone
boolean formula.

Construction 3.4.3 We define a recursive function f ′(φ, ~x, b; r). Let f be a NIC, and let b ∈ {0, 1}. Let φ

be a monotone boolean formula over the variables a1, . . . , am, and let ~x = 〈x1, . . . , xn〉 be a vector of n

strings, where n ≥ m. The randomness r for f ′ is of length polynomial in |〈φ, ~x〉|, and the polynomial is

determined from the construction of f ′, described below.

1. If φ = ai for some 1 ≤ i ≤ m, then return f(xi, b, r).

2. Partition r into r0 and r1 (that is, the concatenation r0r1 equals r).

3. If φ = φ0 ∧ φ1, then return 〈f ′(φ0, ~x, b, r0), f ′(φ1, ~x, b, r1)〉.

4. If φ = φ0 ∨ φ1, then return 〈f ′(φ0, ~x, b0, r0), f ′(φ1, ~x, b1, r1)〉, where b0 ∈ {0, 1} is uniformly

distributed, and b1 is chosen such that b0 ⊕ b1 = b.

3.4.2 Proof of the Closure Result

In this section we prove Theorem 3.4.2 from the previous section. This theorem states that if f is a NIC
for a problem Π, then f ′ defined from f as in Construction 3.4.3 is a NIC for Φ(Π). We use the technique
of [79]. Intuitively, this technique admits a simple analysis in the perfect setting because the advantage of
the adversary remains zero at every stage of construction 3.4.3, and therefore it sums up to zero. However,
in the statistical and the computational settings the advantage is non-negligible, and the total may not be
negligible. This is why we introduced the constant k in Definition 3.4.1, and this is why we need to provide
a more involved analysis. We start with the binding property.

Lemma 3.4.4 If a function f is binding on a set ΠN , then f ′ from Construction 3.4.3 is binding on Φ(Π)N .

Proof: We prove the lemma by induction on the number ` of connectives in φ. For the base case, ` = 0 and
therefore f and f ′ are identical. Since f is binding on ΠN , we get that f ′ is binding on Φ(Π)N . Assume

the induction hypothesis for all ` ≥ 1. Let φ be a monotone boolean formula with ` + 1 connectives, and

26 CHAPTER 3. NON-INTERACTIVE INSTANCE-DEPENDENT COMMITMENT SCHEMES

let 〈φ, ~x〉 ∈ Φ(Π)N . Consider the case where φ = φ0 ∧ φ1, and assume towards contradiction that there are
r0, r

′
0 and r1, r

′
1 such that

f ′(φ, 0; r0r
′
0) = 〈f ′(φ0, 0; r0), f ′(φ1, 0; r′0)〉 = 〈f ′(φ0, 1; r1), f ′(φ1, 1; r′1)〉 = f ′(φ, 1; r1r

′
1).

Since 〈φ, ~x〉 ∈ Φ(Π)N , we can fix b ∈ {0, 1} for which φb(~x) = 0. Hence, f ′(φ0, 0; rb) = f ′(φ0, 1; r′b), and
since φb has at most ` connectives, we get a contradiction to the induction hypothesis. The case where φ =
φ0 ∨ φ1 is similar. Specifically, assume towards contradiction that there are r0, r0, r1, r

′
1 and b0, b

′
0, b1, b

′
1 ∈

{0, 1} such that b0 ⊕ b′0 6= b1 ⊕ b′1, and

f ′(φ, b0 ⊕ b′0; r0r
′
0) = 〈f ′(φ0, b0; r0), f ′(φ1, b

′
0; r

′
0)〉 = 〈f ′(φ0, b1; r1), f ′(φ1, b

′
1; r

′
1)〉 = f ′(φ, b1 ⊕ b′1; r1r

′
1).

Thus, there is d ∈ {0, 1} such that bd 6= b′d and f ′(φ0, 0; rd) = f ′(φ0, 1; r′d). Since φd has at most `

connectives, we get a contradiction to the induction hypothesis.

In the following section we prove the hiding property in the statistical setting, hence obtaining Theo-
rem 3.4.2 for perfectly and statistically hiding NIC.

The Hiding Property in the Statistical Setting

Recall that f ′ outputs 〈f(x1, b), f(x2, b)〉 on input z = 〈a ∧ b, x1, x2〉 ∈ Φ(Π) and bit b, and that if both x1

and x2 are YES instances, then f ′ is hiding (because both f(x1, b) and f(x2, b) are hiding). This motivation
works in the perfect setting, but in the statistical setting the output of f(x1, b) and f(x2, b) may not perfectly

hide the bit b. Intuitively, both f(x1, b) and f(x2, b) may leak a small amount of information about b. Thus,
we need to quantify this amount. We use the following lemma, which is similar to the Direct Product

Lemma and the XOR Lemma from Vadhan’s thesis [86]. To simplify the presentation we omit ~x and r from
the parameters to f ′. The proof is technical, and appears in Section 3.6.1.

Lemma 3.4.5 Let f ′ be a function, let ~x be a vector of strings, and let φ0 and φ1 be monotone boolean

formula. Then,

∆(f ′(φ0 ∧ φ1, 0), f ′(φ0 ∧ φ1, 1)) ≤ ∆(f ′(φ0, 0), f ′(φ0, 1)) + ∆(f ′(φ1, 0), f ′(φ1, 1)), and

∆(f ′(φ0 ∨ φ1, 0), f ′(φ0 ∨ φ1, 1)) ≤ ∆(f ′(φ0, 0), f ′(φ0, 1)) ·∆(f ′(φ1, 0), f ′(φ1, 1)).

Now we prove Theorem 3.4.2 in the statistical setting. The idea is to recursively apply the above lemma,

and to carefully add the the amount of information leaked at each stage of Construction 3.4.3. For this
purpose we introduce the notation of P (φ), which denotes the multiset containing all the indices of boolean
variables in a formula φ (e.g., if φ = (α1 ∨ α2) ∧ α1, then P (φ) = {1, 1, 2}).

Lemma 3.4.6 If a function f is perfectly (respectively, statistically) hiding on a set ΠY , then for any k ∈ N
Construction 3.4.3 of f ′ is perfectly (respectively, statistically) hiding on Φ(Π)Y (respectively, Φ(Π)k

Y).

3.4. CLOSURE OF PROBLEMS POSSESSING NIC UNDER MONOTONE BOOLEAN FORMULAE27

Proof: Let k ∈ N. We start with the statistical setting, and the perfect setting will follow. Our goal is to
show that the statistical distance between commitments to 0 and commitments to 1 is negligible. Thus, as a
first step we prove that for any vector 〈φ, ~x〉 = 〈φ, 〈x1, . . . , xn〉〉 it holds that

∆
(
f ′(φ, ~x, 0), f ′(φ, ~x, 1)

) ≤
∑

i∈P (φ)

∆
(
f(xi, 0), f(xi, 1)

)
.

We prove the above hypothesis by induction on the number ` of connectives in φ. The base case is trivial
because ` = 0, and therefore f and f ′ are identical. Assume the induction hypothesis for all ` ≥ 1, and
let 〈φ, ~x〉 = 〈φ, x1, . . . , xn〉 ∈ Φ(Π)k

Y . Notice that regardless of whether φ equals φ0 ∧ φ1 or φ0 ∨ φ1, by
Lemma 3.4.5 it holds that

∆(f ′(φ, ~x, 0), f ′(φ, ~x, 1)) ≤ ∆(f ′(φ0, ~x, 0), f ′(φ0, ~x, 1)) + ∆(f ′(φ1, ~x, 0), f ′(φ1, ~x, 1)).

Now we apply the induction hypothesis to both φ0 and φ1. Hence, we get that

∆(f ′(φ, ~x, 0), f ′(φ, ~x, 1)) ≤
∑

i∈P (φ0)

∆(f(xi, 0), f(xi, 1)) +
∑

i∈P (φ1)

∆(f(xi, 0), f(xi, 1)).

Since P (φ) = P (φ0) ∪ P (φ1), the induction follows. Notice that if f is perfectly hiding, then the above
sum equals 0, and thus f ′ is perfectly hiding on Φ(Π)Y . In the statistical setting we are not done because
we need to show that this sum is negligible in the length of 〈φ, ~x〉. Thus, we proceed to the next step.

Let a ∈ N. Since f is statistically hiding on ΠY, there is N such that ∆(f(x, 0), f(x, 1)) ≤ 1/|x|ak+k

for any x ∈ ΠY of length at least N . Notice that by Definition 3.4.1 of Φ(Π)k, there is N ′ such that for any
〈φ, x1, . . . , xn〉 ∈ Φ(Π)k

Y of length at least N ′ it holds that |xi| ≥ N for each 1 ≤ i ≤ n. Hence, fixing
N ′ we are guaranteed that for any 〈φ, ~x〉 = 〈φ, x1, . . . , xn〉 ∈ Φ(Π)k

Y of length of at least N ′ it holds that
∆(f(xi, 0), f(xi, 1)) ≤ 1/|xi|ak+k for each 1 ≤ i ≤ n, and by the fact that we proved using induction,

∆(f ′(φ, ~x, 0), f ′(φ, ~x, 1)) ≤
∑

i∈P (φ)

∆(f(xi, 0), f(xi, 1)) ≤
∑

i∈P (φ)

1/|xi|ak+k.

It remains to show that
∑

i∈P (φ) 1/|xi|ak+k ≤ 1/|〈φ, ~x〉|a for any 〈φ, ~x〉 ∈ Φ(Π)k of length at least N ′.
This follows from Definition 3.4.1 of Φ(Π)k because for any 〈φ, x1, . . . , xn〉 ∈ Φ(Π)k

Y and 1 ≤ i ≤ n it
holds that |〈φ, x1, . . . , xn〉| ≤ |xi|k, which implies that for any 1 ≤ i ≤ n the total number of variables in φ

is at most |xi|k. Hence, for any 〈φ, x1, . . . , xn〉 ∈ Φ(Π)k
Y there is 1 ≤ j ≤ n such that

∑

i∈P (φ)

1/|xi|ak+k ≤ |P (φ)| · 1/|xj |ak+k ≤ |xj |k · 1/|xj |ak+k ≤ 1/|〈φ, x1, . . . , xn〉|a.

We conclude that ∆(f ′(φ, ~x, 0), f ′(φ, ~x, 1)) ≤ 1/|〈φ, ~x〉|a for any a ∈ N and sufficiently long 〈φ, ~x〉 ∈
Φ(Π)k

Y . Thus, f ′ is statistically hiding on Φ(Π)k
Y .

28 CHAPTER 3. NON-INTERACTIVE INSTANCE-DEPENDENT COMMITMENT SCHEMES

The Hiding Property in the Computational Setting

In the computational setting we need a lemma analogous to Lemma 3.4.5. Roughly speaking, we use a
distinguisher D on φ = φ0 ∧ φ1 to construct circuits C0 and C1 such that either C0 is a distinguisher on φ0

or C1 is a distinguisher on φ1. Notice that we also need to make sure that the size of C0 and C1 is related
to the size of D, so that later, when we apply this lemma inductively, the size of the resulting distinguisher

will still be polynomial. The proof is technical, and appears in Section 3.6.2.

Lemma 3.4.7 Let f ′ be the function from construction 3.4.3, let φ0 and φ1 be monotone boolean formulae,

and let ~x be a vector of strings. Given a circuit D, for each i ∈ {0, 1} there are circuits Ci and Ei of size at

most |D|+ |f ′|+ |φi|+
∑

j∈P (φi)
|xj | each such that

adv(D, f ′(φ0 ∧ φ1, 0), f ′(φ0 ∧ φ1, 1)) ≤ adv(C0, f
′(φ0, 0), f ′(φ0, 1)) + adv(C1, f

′(φ1, 0), f ′(φ1, 1)),

and adv(D, f ′(φ0 ∨ φ1, 0), f ′(φ0 ∨ φ1, 1)) ≤ adv(Ei, f
′(φi, 0), f ′(φi, 1)).

Finally, we prove Theorem 3.4.2 in the computational setting. The proof is complicated because we start
with a distinguisher D whose input contains an instance of Φ(Π)k, and from this distinguisher we need to
construct a distinguisher C whose input is an instance of Π. To do this, we will define an infinite sequence
of x ∈ ΠY from the sequence Φ(Π)k

Y , making sure that the size of C is polynomial in the size of D.

Lemma 3.4.8 If f is a computationally hiding NIC on a set ΠY , then for any k ∈ N Construction 3.4.3 of

f ′ is computationally hiding on Φ(Π)k
Y .

Proof: Let k ∈ N. Our goal is to show that if a circuit D distinguishes commitments of formula φ (i.e.,
commitments to 0 and commitments to 1), then there is a circuit Ci that distinguishes commitments on one
of the xi, and the size of Ci is polynomial in the size of D. First, we prove that for any circuit D and any
vector 〈φ, ~x〉 there are circuits Ci, each of size at most |D|+ |P (φ)| · |f ′|+ |φ|+ ∑

j∈P (φ) |xj |, such that

adv
(
D, f ′(φ, ~x, 0), f ′(φ, ~x, 1)

) ≤
∑

i∈P (φ)

adv
(
Ci, f(xi, 0), f(xi, 1)

)
.

We prove the above hypothesis by induction on the number ` of connectives in φ. The base case is trivial
because ` = 0, and φ is a boolean variable (i.e., φ = ai). Thus, f and f ′ are identical, and we can take
Ci = D. Assume the induction hypothesis for all ` ≥ 1, let D be a circuit, and let 〈φ, ~x〉 = 〈φ, x1, . . . , xn〉
be a vector. We only treat the case φ = φ0 ∧ φ1 because the case φ0 ∨ φ1 is similar. Omitting ~x, by

Lemma 3.4.7, there are circuits C0 and C1 such that

adv(D, f ′(φ0 ∧ φ1, 0), f ′(φ0 ∧ φ1, 1)) ≤ adv(C0, f
′(φ0, 0), f ′(φ0, 1)) + adv(C1, f

′(φ1, 0), f ′(φ1, 1)),

3.5. CONSEQUENCES - THE NIC FRAMEWORK 29

and the size of C0 is at most |D| + |f ′| + |φ1| +
∑

j∈P (φ1) |xj |. Thus, by the induction hypothesis for φ0,
there are circuits C0

i such that

adv
(
C0, f

′(φ0, ~x, 0), f ′(φ0, ~x, 1)
) ≤

∑

i∈P (φ0)

adv
(
C0

i , f(xi, 0), f(xi, 1)
)
,

and the size of each of the circuits C0
i is at most

(|D|+ |P (φ1)| · |f ′|+ |φ1|+
∑

j∈P (φ1) |xj |
)

+ |P (φ0)| ·
|f ′| + |φ0| +

∑
j∈P (φ0) |xj |, which equals |D| + |P (φ)| · |f ′| + |φ| + ∑

j∈P (φ) |xj |. A similar argument
applies to C1. Thus, denoting the circuits corresponding to C1 by C1

i we get that

adv(D, f ′(φ0 ∧ φ1, 0), f ′(φ0 ∧ φ1, 1)) ≤
∑

i∈P (φ0)

adv
(
C0

i , f(xi, 0), f(xi, 1)
)

+

∑

i∈P (φ1)

adv
(
C1

i , f(xi, 0), f(xi, 1)
)
.

Since the size of the circuits C0
i and C1

i is as stated in hypothesis, the induction follows.

In the rest of the proof we show that the advantage is negligible in the length of 〈φ, ~x〉. Formally, we
assume towards a contradiction that there is a ∈ N, a polynomial-size circuit D, and an infinite sequence I

of vectors 〈φ, ~x〉 ∈ Φ(Π)k
Y such that adv(D, f ′(φ, ~x, 0), f ′(φ, ~x, 1)) ≥ 1/|〈φ, ~x〉|a for all 〈φ, ~x〉 ∈ I , and

then we show that this contradicts the fact that f is a computationally hiding NIC on ΠY .

Fix D, I and a. Recall that for any vector 〈φ, ~x〉 it holds that |P (φ)| ≤ |〈φ, ~x〉|, and that the size
of D and f ′ is polynomial in the size of |〈φ, ~x〉|. Thus, by the fact that we proved using induction there
is a polynomial p such that for each 〈φ, ~x〉 ∈ I there are circuits Ci of size at most p(|〈φ, ~x〉|) and∑

i∈P (φ) adv
(
Ci, f(xi, 0), f(xi, 1)

) ≥ adv
(
D, f ′(φ, ~x, 0), f ′(φ, ~x, 1)

) ≥ 1/|〈φ, ~x〉|a. Now, by Defini-
tion 3.4.1 of Φ(Π)k, for any 〈φ, ~x〉 = 〈φ, x1, . . . , xn〉 ∈ Φ(Π)k

Y and 1 ≤ j ≤ n it holds that |xj |k ≥ |〈φ, ~x〉|.
Thus, for each each 〈φ, ~x〉 ∈ I there is 1 ≤ j ≤ n and a circuit Cxj of size at most p(|xj |k) such that
adv

(
Cxj , f(xj , 0), f(xj , 1)

) ≥ |xj |−k · 1/|〈φ, ~x〉|a ≥ 1/|xj |ak−k. Since there are infinitely many such xj ,
we get a contradiction to the premise that f is a computationally hiding NIC on ΠY .

3.5 Consequences - the NIC Framework

We showed that the class of problems possessing V -bit zero-knowledge proofs can be represented by NIC,
it is closed under arbitrary monotone boolean formula, and it contains random-self reducible problems. Now
we show that this yields a framework that connects the notion of NIC to many zero-knowledge protocols in

various settings, and allows us to study all the known PZK problems through NIC.

30 CHAPTER 3. NON-INTERACTIVE INSTANCE-DEPENDENT COMMITMENT SCHEMES

Studying Zero-Knowledge Protocols Through NIC

Consider the non-black-box protocol of Barak [7]. This protocol is important because it has desirable prop-
erties that are impossible to achieve with black-box simulation [40, 22, 8]. Specifically, it is a public-coin,
computational zero-knowledge (CZK) argument with a constant number of rounds, perfect completeness,
and a negligible soundness error. This protocol applies to any NP problem, and it assumes the existence of
commitment schemes, and collision-resistent hash functions.

Our framework enables us to replace the commitment scheme in the protocol of Barak [7] with a NIC.
For example, we get that if a problem has a perfectly hiding NIC (e.g., GRAPH-ISOMORPHISM, DISCRETE-
LOGARITHM, etc.), then the protocol of [7] is a PZK argument for this problem. This is a significant
improvement of the zero-knowledge property from computational to perfect, but it applies to problems
admitting NIC, whereas the result of Barak [7] applies to NP. Furthermore, this is the first evidence that
perfect (as opposed to computational) zero-knowledge arguments with non-black-box simulators can be
achieved using only collision resistant hash-functions.

Corollary 3.5.1 (using [7]) Assuming the existence of collision-resistant hash functions, if a problem has a

perfectly (respectively, statistically) hiding NIC, then it has a constant-round, public-coin PZK (respectively,

SZK) argument with a negligible soundness error. The protocol has a non-black-box simulator that runs

in strict polynomial time, and it remains zero-knowledge even when composed concurrently polynomially

many times, for any fixed polynomial. The same applies to computationally hiding NIC if, in addition, the

underlying problem is in NP.

We remark that the existence of collision resistant hash-functions implies that of commitment schemes,
but the hiding property of the schemes is computational, and thus they only yield computational (as opposed

to perfect) zero-knowledge arguments.

Abstraction and Closure

Itoh, Ohta, and Shizuya [50] also observed that in the protocol of [41] for GRAPH-NONISOMORPHISM a
NIC with reversed properties can replace the commitment scheme. By reversed we mean that the hiding
property holds on NO instances of the problem (instead of YES instances), and the binding property holds
on YES instances (instead of NO instances). Micciancio, Ong, Sahai, and Vadhan [62] showed that this
also applies to the protocol of Prabhakaran, Rosen and Sahai [76], and then they constructed such NIC for
specific problems (e.g., GRAPH-NONISOMORPHISM, and variants of STATISTICAL-DISTANCE).

Our framework strengthens and simplifies the results of [50, 62]. For example, since we already have a
characterization result, unlike in [62], we do not need to construct NIC with reversed properties for specific
problems (e.g., GRAPH-NONISOMORPHISM) or to be familiar with the definition of these problems (e.g.,
the lattice problems of [63]). Also, our framework shows that such NIC are closed under monotone boolean

formulae. Thus, when we plug our framework to the theorem of [62] we get that arbitrary, monotone boolean

3.5. CONSEQUENCES - THE NIC FRAMEWORK 31

formulae over a large class of problems (which contains, e.g., the complement of any random self-reducible
problem) unconditionally have a concurrent zero-knowledge proof.

Corollary 3.5.2 (using [76, 62]) If a problem Π has a statistically (respectively, computationally) hiding

NIC, then Π has a public-coin, concurrent SZK proof (respectively, argument). The simulator is black-box,

and the zero-knowledge property holds even with respect to computationally unbounded verifiers.

The above improvements to the work of [62] demonstrate that in some cases we can take protocols
that deal with a specific problem that has a NIC (or whose complement has a NIC), and then generalize
these protocols to any problem that has a NIC, and monotone boolean formulae over such problems. This
allows us to obtain more general results, without the need to refer to specific problems. For example, such
improvements also apply to the local zero-knowledge protocols of [61], and to the quantum zero-knowledge
protocols of [88].

Unifying Previous Works, Random Self-Reducibility, and Σ-protocols

Our framework replaces the notions of random self-reducibility [4] and Σ-protocols [26] with the simpler
notion of a NIC, and then ties them with all the improvements mentioned above. For example, our frame-
work unifies under the theme of NIC the results of Tompa and Woll [84], De Santis, Di Crescenzo, Persiano,
and Yung [79], and Itoh, Ohta, and Shizuya [50]. To further clarify this contribution, we explicitly list the
relevant main results of these papers.

• Tompa and Woll [84] showed that any self-reducible problem has a perfect zero-knowledge (PZK)

proof with an efficient prover.

• De Santis, Di Crescenzo, Persiano, and Yung [79] generalized the result of [84] to monotone boolean
formulae over random self-reducible (RSR) problems.

• Itoh, Ohta, and Shizuya [50] defined what we call a perfectly hiding NIC, and by showing that specific
languages (e.g., variants of GRAPH-ISOMORPHISM) admit such a NIC, they obtained PZK proofs
with efficient provers for these problems.

The above works focus on RSR problems and deal only with the perfect setting. In contrast, our frame-
work includes RSR problems, as well as problems that are not known to be RSR (such as variants of
SD [77]). Our framework also considers the statistical and the computational settings, where closure un-

der monotone boolean formulae is technically more involved. Hence, our framework yields stronger re-
sults under one simple theme, and these results apply also to statistical and computational zero-knowledge.
Specifically, we get the following.

Corollary 3.5.3 (using [79, 50, 29]) Consider the class of problems admitting perfectly hiding NIC, sta-

tistically hiding NIC, and NP problems admitting computationally hiding NIC. This class contains RSR
problems, and it is closed under arbitrary (as opposed to fixed) monotone boolean formulae.

32 CHAPTER 3. NON-INTERACTIVE INSTANCE-DEPENDENT COMMITMENT SCHEMES

Any problem in this class has a zero-knowledge proof with an efficient prover, and the zero-knowledge

property is inherited from the hiding property of the scheme. Furthermore, the zero-knowledge proof is also

a proof of knowledge [39].

3.5.1 Sigma protocols

Σ-protocols [26] are related to V -bit protocols in that they are also 3-round and public-coin, but instead of
sending a bit, the verifier sends a string. We do not know if any V -bit zero-knowledge protocol is also a
Σ-protocol. However, using our characterization result we prove that these notions are in fact equivalent.
That is, a language has a V -bit zero-knowledge protocol if and only if it has a Σ-protocol. Thus, all of our
improvements immediately extend to problems admitting Σ-protocols.

Lemma 3.5.4 A problem Π has a V -bit HVPZK (respectively, HVSZK, HVCZK) proof if and only if Π has

a perfect (respectively, statistical, computational) Σ-protocol.

Sigma protocols play an important role in cryptography. Such protocols were given by Schnorr [81] and
Guillou and Quisquater [48], and the notion of Σ-protocols was later formalized in the thesis of Cramer [26].
We start with the definition of Σ-protocols.

Definition 3.5.5 (Σ-protocol [30]) Let p be a polynomial, and let R be a relation such that |w| ≤ p(|x|)
for any 〈x, w〉 ∈ R. An interactive protocol 〈P, V 〉 is a Σ-protocol for R if V runs in polynomial time, and

the following properties hold.

• Public-coin, 3-round: on common input x, the prover P sends a, the verifier V replies with a uni-

formly chosen string e, the prover sends back z, and V accepts or rejects based on 〈x, a, e, z〉.

• Perfect completeness: if there is w such that 〈x,w〉 ∈ R, then V accepts x with probability 1 over

the randomness for P and V .

• Special soundness: there is a polynomial-time Turing machine M such that for any x, if 〈a, e, z,accept〉
and 〈a, e′, z′,accept〉 are in 〈P, V 〉(x) and e 6= e′, then M(a, e, e′, z, z′) = w and 〈x,w〉 ∈ R.

• Special honest-verifier zero-knowledge: there is a probabilistic, polynomial-time Turing machine

S, called the simulator, such that for any 〈x,w〉 ∈ R and e, the output of S(x, e) is identically

distributed to 〈P, Ve〉(x), where Ve is the verifier that sends e as its random string.

Definition 3.2.1 of a V -bit protocol is similar to that of a Σ-protocol in that both of them consider
3-round, public-coin protocols with perfect completeness.

The difference between the notions is that V -bit protocols make no reference to relations, zero-knowledge,
or special soundness. Also, in V -bit protocols the verifier sends only one bit, whereas in Σ-protocols the

verifier sends a string e. However, as was observed by Damgård, a protocol remains Σ-protocol even if

3.6. PROOFS OF LEMMA 3.4.5 AND LEMMA 3.4.7 33

instead of sending e the verifier sends one bit b, and e is defined as b followed by zeroes [30]. Thus, if a
relation R has a Σ-protocol, then R has a V -bit zero-knowledge protocol. Now we show that the opposite
is also true, thus proving Lemma 3.5.4.

Proof of Lemma 3.5.4: (sketch) Let Π = 〈ΠY , ΠN 〉 be a problem, and let 〈P, V 〉 be a V -bit zero-
knowledge proof for Π. We show that Π has Σ-protocol with the same zero-knowledge property. We start
with the observation that as a class of promise problems, Π is in NP. This is so because if x ∈ ΠY , then there
are prover messages m1,m2, m

′
2 such that V accepts on both transcripts 〈x,m1, 0,m2〉 and 〈x,m1, 1,m′

2〉,
and if x ∈ ΠN , then no such transcripts exist. Thus, 〈m1,m2,m

′
2〉 is a witness for x. By our characterization

result, Π has a NIC f . Thus, the protocol 〈P ′, V ′〉 of Blum [15], where P ′ proves to V ′ that x ∈ ΠY using
the witness 〈m1, m2,m

′
2〉, is a zero-knowledge proof for Π. Notice that the resulting proof inherits its zero-

knowledge property from the hiding property of the NIC, and it has perfect completeness. Since the proof
is also V -bit, it satisfies the special soundness and the special honest-verifier zero-knowledge conditions.

3.6 Proofs of Lemma 3.4.5 and Lemma 3.4.7

In this section we provide the proofs for the technical lemmas from Section 3.4.

3.6.1 Proof of Lemma 3.4.5

Intuitively, this lemma sums the statistical distance for the AND and the OR operators. We start with the
case where φ = φ0 ∧ φ1. Recall that for any bit b it holds that Pr[f ′(φ, b) = 〈α, β〉] = Pr[f ′(φ0, b) =
α] · Pr[f ′(φ1, b) = β]. Hence,

∆(f ′(φ, 0), f ′(φ, 1)) =∑

α,β

|Pr[f ′(φ0, 0) = α] · Pr[f ′(φ1, 0) = β]− Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 1) = β]| =
∑

α,β

|Pr[f ′(φ0, 0) = α] · Pr[f ′(φ1, 0) = β]− Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 0) = β] +

Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 0) = β]− Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 1) = β]| ≤∑

α,β

|Pr[f ′(φ0, 0) = α] · Pr[f ′(φ1, 0) = β]− Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 0) = β]|+
∑

α,β

|Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 0) = β]− Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 1) = β]| =
∑

β

Pr[f ′(φ1, 0) = β] ·
(∑

α

|Pr[f ′(φ0, 0) = α]− Pr[f ′(φ0, 1) = α]|
)

+

∑
α

Pr[f ′(φ0, 1) = α] ·
(∑

β

|Pr[f ′(φ1, 0) = β]− Pr[f ′(φ1, 1) = β]|
)

=

∆(f ′(φ0, 0), f ′(φ0, 1)) + ∆(f ′(φ1, 0), f ′(φ1, 1)).

34 CHAPTER 3. NON-INTERACTIVE INSTANCE-DEPENDENT COMMITMENT SCHEMES

The case where φ = φ0 ∨φ1 is different because the bit b is shared between two bits b0 and b1. Specifically,

Pr[f ′(φ, 0) = 〈α, β〉] =
1
2
· Pr[f ′(φ0, 0) = α] · Pr[f ′(φ1, 0) = β] +

1
2
· Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 1) = β]

and

Pr[f ′(φ, 1) = 〈α, β〉] =
1
2
· Pr[f ′(φ0, 0) = α] · Pr[f ′(φ1, 1) = β] +

1
2
· Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 0) = β].

Hence,

Pr[f ′(φ, 1) = 〈α, β〉]− Pr[f ′(φ, 0) = 〈α, β〉] =

1/2(Pr[f ′(φ0, 0) = α] · Pr[f ′(φ1, 0) = β] + Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 1) = β])−
1/2(Pr[f ′(φ0, 0) = α] · Pr[f ′(φ1, 1) = β] + Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 0) = β]) =

1/2 · Pr[f ′(φ1, 0) = β](Pr[f ′(φ0, 0) = α]− Pr[f ′(φ0, 1) = α])−
1/2 · Pr[f ′(φ1, 1) = β](Pr[f ′(φ0, 0) = α]− Pr[f ′(φ0, 1) = α]) =

1/2 · (Pr[f ′(φ1, 0) = β]− Pr[f ′(φ1, 1) = β])(Pr[f ′(φ0, 0) = α]− Pr[f ′(φ0, 1) = α]).

Using the above equality we conclude that

∆(f ′(φ, 0), f ′(φ, 1)) =
1
2

∑

〈α,β〉
|Pr[f ′(φ, 1) = 〈α, β〉]− Pr[f ′(φ, 0) = 〈α, β〉]| =

1
2
· 1
2

∑

〈α,β〉
|(Pr[f ′(φ1, 0) = β]− Pr[f ′(φ1, 1) = β])(Pr[f ′(φ0, 0) = α]− Pr[f ′(φ0, 1) = α])| =

(1
2

∑

β

|Pr[f ′(φ1, 0) = β]− Pr[f ′(φ1, 1) = β]|
)
·
(1

2

∑
α

|Pr[f ′(φ0, 0) = α]− Pr[f ′(φ0, 1) = α]|
)

= ∆(f ′(φ1, 0), f ′(φ1, 1)) ·∆(f ′(φ0, 0), f ′(φ0, 1)).

3.6.2 Proof of Lemma 3.4.7

Intuitively, this lemma sums the computational distance for a circuit D under both the AND and the OR
operators. Fix φ0, φ1, ~x and D. To simplify the presentation we omit ~x. We start with the ∧ operator. Let

C0 (respectively, C1) be the circuit that on input y obtains a random sample y′ of f ′(φ0, 0) (respectively,

3.7. OPEN QUESTIONS 35

f ′(φ1, 1)), and outputs D(y′, y) (respectively, D(y, y′)). Thus, by Construction 3.4.3 of f ′,

adv(D, f ′(φ0 ∧ φ1, 0), f ′(φ0 ∧ φ1, 1)) =

|Pr[D(〈f ′(φ0, 0), f ′(φ1, 0)〉) = 1]− Pr[D(〈f ′(φ0, 1), f ′(φ1, 1)〉) = 1]| =
|Pr[D(〈f ′(φ0, 0), f ′(φ1, 0)〉) = 1]− Pr[D(〈f ′(φ0, 0), f ′(φ1, 1)〉) = 1] +

Pr[D(〈f ′(φ0, 0), f ′(φ1, 1)〉) = 1]− Pr[D(〈f ′(φ0, 1), f ′(φ1, 1)〉) = 1]| ≤
adv(C0, f

′(φ1, 0), f ′(φ1, 1)) + adv(C1, f
′(φ0, 0), f ′(φ0, 1)).

We turn our attention to the ∨ operator. Let E0 (respectively, E1) be the circuit that on input y uniformly
picks b′ ∈ {0, 1}, obtains a random sample y′ of f ′(φ1, b

′) (respectively, f ′(φ0, b
′)), and outputs b′⊕D(y, y′)

(respectively, b′ ⊕D(y′, y)). We only consider the case of E0 because the case of E1 is symmetric. Thus,
by Construction 3.4.3 of f ′,

Pr[D(f ′(φ0 ∨ φ1, 0)) = 1] =

1/2 · Pr[D(〈f ′(φ0, 0), f ′(φ1, 0)〉) = 1] + 1/2 · Pr[D(〈f ′(φ0, 1), f ′(φ1, 1)〉) = 1], and

Pr[D(f ′(φ0 ∨ φ1, 1)) = 1] =

1/2 · Pr[D(〈f ′(φ0, 1), f ′(φ1, 0)〉) = 1] + 1/2 · Pr[D(〈f ′(φ0, 0), f ′(φ1, 1)〉) = 1],

and therefore

adv(E0, f
′(φ0, 0), f ′(φ0, 1)) =

|Pr[E0(f ′(φ0, 0)) = 1]− Pr[E0(f ′(φ0, 1)) = 1]| =
|1/2 · Pr[D(〈f ′(φ0, 0), f ′(φ1, 0)〉) = 1]− 1/2 · Pr[D(〈f ′(φ0, 0), f ′(φ1, 1)〉) = 1]−
1/2 · Pr[D(〈f ′(φ0, 1), f ′(φ1, 0)〉) = 1] + 1/2 · Pr[D(〈f ′(φ0, 1), f ′(φ1, 1)〉) = 1]| =
|Pr[D(f ′(φ0 ∨ φ1, 0)) = 1]− Pr[D(f ′(φ0 ∨ φ1, 1)) = 1]| =
adv(D, f ′(φ0 ∨ φ1, 0), f ′(φ0 ∨ φ1, 1)).

It remains to show that the size of Ci and Ei is as stated. Notice that each circuit takes a string y as input, and
invokes D on y and y′, where y′ is obtained by using Construction 3.4.3 of f ′, with φi and {xj |j ∈ P (φi)}
hardwired into it. Thus, the size of each of Ci and Ei is at most |D|+ |f |+ |φi|+

∑
j∈P (φi)

|xj |.

3.7 Open Questions

We showed a V -bit protocol for any problem that has a NIC, and this protocol has soundness error 1/2,

which is inherent to public-coin black-box zero-knowledge protocols [40]. Our open question is whether the

36 CHAPTER 3. NON-INTERACTIVE INSTANCE-DEPENDENT COMMITMENT SCHEMES

soundness error can be reduced to 1/2n. Indeed, the protocol of [10] achieves this for random-self reducible
problems, but it does not seem to apply to problems admitting NIC.

Chapter 4

Perfect Simulation and A Complete
Problem for NIPZK

The NIC framework presented in the previous chapter allowed us to study the known problems admitting
PZK proofs. In this chapter we are interested in a framework that would provide means to study all the

problems admitting PZK proofs. Such framework can be provided by hard or complete problems. For
example, in the case of NP, the study of the entire class is facilitated through NP-complete problems [24,
58, 57]. Similarly, the SZK-complete problems of [77, 44] and similar characterizations for CZK [87]
were used to prove many results about statistical and computational zero-knowledge protocols, such as
equivalence between private-coin and public-coin, equivalence between honest and malicious verifier, and

much more [71, 42, 86, 70, 69, 72, 73, 23]. Thus, our goal is to find complete problems for the case of
perfect zero-knowledge proofs.

The issue is that, like other techniques used in the study of SZK, the reductions from the study of
statistical zero-knowledge proofs [77, 80, 43] introduce a small error into the simulation. In the statistical
setting this is not a problem because a small error is allowed. In contrast, perfect zero-knowledge protocols
do not allow any error in the simulation, and therefore these reductions do not apply to the perfect setting.

We remark that the issue with the error incurred by the reductions from the statistical setting was ad-
dressed by Sahai and Vadhan [77]. However, they were only able to overcome it in simple cases (e.g., when
the underlying problems have perfect completeness), or to provide unnatural complete problems that are de-
fined in terms of the class itself. Their approach was to overcome difficulties in the reduction itself, whereas
our approach is to consider both the reduction and the protocol, and fix them together.

4.0.1 Main results

We apply a new error shifting technique to the reductions and the zero-knowledge proofs from the statistical
setting. Intuitively, our technique shifts to the protocol errors that would otherwise become simulation

errors. This description is very loose, but we chose it because our technique can be applied in various

37

38 CHAPTER 4. PERFECT SIMULATION AND A COMPLETE PROBLEM FOR NIPZK

different contexts, and in each of these contexts it takes a different form. In the case of reductions, instead
of dealing with the error in the reduction itself [77], our technique shifts the error forward to the protocol,
where it is no longer a simulation error. Consequently, we obtain complete and hard problems for the perfect
setting.

Our results apply to both the interactive and the non-interactive model. In the non-interactive model,
due to Blum, Feldman, and Micali [16], a common random string is available to both parties, and only one
message is sent from the prover to the verifier.

We start by applying the error shifting technique to the reduction of Goldreich, Sahai, and Vadhan [43]

and its non-interactive statistical zero-knowledge (NISZK) proof. We note that the reduction of [43] orig-
inated from the reduction of De Santis, Di Crescenzo, Persiano, and Yung [80] for NISZK. Consequently,
we obtain the first complete problem for the class of problems possessing non-interactive perfect zero-
knowledge proofs (NIPZK).

Theorem 4.0.1 UNIFORM is NIPZK-complete.

Informally, instances of UNIFORM are circuits similar to the NISZK-complete problem STATISTICAL

DISTANCE FROM UNIFORM (SDU) [43], but they have an additional output bit. Ignoring this bit, we can
think of YES instances of UN as circuits that represent the uniform distribution, whereas NO instance are
circuits that hit only a small fraction of their range. The difference between SDU to our problem is that
YES instances of UNIFORM represent the uniform distribution, whereas YES instances of SDU represent
a distribution that is only statistically close to uniform. This difference is natural because it reflects the
difference between perfect and statistical simulation.

In the interactive model we obtain a similar result. That is, we apply the error shifting technique to the
reduction of [77], thus obtaining a hard problem for the class of problems possessing public-coin HVPZK
proofs. Instances of our hard problem are triplets of circuits. Again, ignoring one of these circuits, our
problem is a variant of STATISTICAL-DISTANCE (SD) [77]. That is, we can think of YES instances of our

problem as pairs of circuits representing the same distribution, whereas instances of the reduction of [77]
are circuits representing statistically close distributions. Essentially, this means that SD0,1/2 is hard for the
class of problems possessing public-coin HVPZK proofs.

Theorem 4.0.2 IDENTICAL DISTRIBUTIONS is hard for the class of problems possessing public-coin HVPZK
proofs.

We remark that a complete problem for PZK was given in [77], but unlike our problems, it is unnatural,
and is defined in terms of the class itself.

4.0.2 Organization

Our completeness result is given in Section 4.2, and our hard problem is described in Section 4.3. In

Section 4.4 we show applications of the error shifting technique, such as closure of NIPZK under the OR

4.1. DEFINITIONS 39

operator, and the equivalence between notions of zero-knowledge with respect to simulators that fail. We
start with definitions.

4.1 Definitions

In this section we define protocols, proofs, and zero-knowledge in the non-interactive model. These defini-
tions are analogous to those given in Chapter 2. We start with non-interactive protocols, where a common
random string is available to both parties, and the prover sends only one message. Formally,

Definition 4.1.1 (Non-interactive protocols) A non-interactive protocol 〈b, P, V 〉 is a triplet (or simply a

pair 〈P, V 〉, making b implicit), where P and V are functions, and b ∈ N. We denote by rP the random

inputs to P . The interaction between P and V on common input x is the following random process.

1. Uniformly choose rP , and choose a common random string rI ∈ {0, 1}|x|b .

2. Let π = P (x, rI ; rP), and let m = V (x, rI , π).

3. Output 〈x, rI , π, m〉.

We call 〈P, V 〉(x) def= 〈x, rI , π〉 the view of V on x. We say that V accepts x (respectively, rejects x) if

m = accept (respectively, m = reject).

Definition 4.1.1 considers a deterministic verifier V , but it is equivalent to a the definition that considers
a probabilistic V (the idea is to let V use a portion of rI as its randomness, and since this may allow the
prover to cheat, we require P to send one proof that makes V accept on many portions of rI [56]).

We continue to the definition of non-interactive proofs [16, 17]. Like in interactive proofs, we require
that the verifier accept YES instances and reject NO instances, but now the probabilities are also over the
choice of the common random string. Formally,

Definition 4.1.2 (Non-interactive proofs) A non-interactive protocol 〈b, P, V 〉 is a non-interactive proof
for a problem Π if there is a ∈ N and c(n), s(n) : N→ [0, 1] such that 1− c(n) ≥ s(n) + 1/na for any n,

and the following conditions hold.

• Efficiency: V runs in time polynomial in |x|.

• Completeness: V accepts all x ∈ ΠY with probability at least 1− c(|x|) over rI and rP .

• Soundness: PrrI [V (x, rI , P
∗(x, rI)) = accept] ≤ s(|x|) for any function P ∗ and any x ∈ ΠN.

The function c is called the completeness error, and the function s is called the soundness error. We say that

〈P, V 〉 has perfect completeness if c ≡ 0.

40 CHAPTER 4. PERFECT SIMULATION AND A COMPLETE PROBLEM FOR NIPZK

Alternatively, by letting V choose the common random string, we can view non-interactive proofs as
2-round public-coin proofs. Finally, we define zero-knowledge proofs in the non-interactive model.

Definition 4.1.3 (Non-interactive, zero-knowledge protocols) A non-interactive protocol 〈P, V 〉 is per-
fect zero-knowledge (NIPZK) for a problem Π = 〈ΠY, ΠN〉 if there is a probabilistic, polynomial-time

Turing machine S, called the simulator, such that the ensembles

{〈P, V 〉(x)}x∈ΠY
and {S(x)}x∈ΠY

are statistically identical.

If these ensembles are statistically indistinguishable, then 〈P, V 〉 is a non-interactive statistical zero-
knowledge (NISZK) protocol for Π. Similarly, if the ensembles are computationally indistinguishable, then

〈P, V 〉 is non-interactive computational zero-knowledge (NICZK) protocol for Π.

The class of problems possessing NIPZK (respectively, NISZK, NICZK) protocols is also denoted

NIPZK (respectively, NISZK, NICZK).

Following the above remark, non-interactive zero-knowledge proofs are public-coin, 2-round honest-
verifier zero-knowledge proofs, and therefore they can be transformed into constant-round, public-coin zero-
knowledge proofs using the transformation of Damgård, Goldreich, and Micali [28].

4.2 Perfect Simulation and A Complete Problem for NIPZK

In this section we introduce the error shifting technique. Using this technique we modify the reduction
of [43], hence obtaining a NIPZK-complete problem.

Starting with some background, we give the definition of STATISTICAL DISTANCE FROM UNIFORM

(SDU), the NISZK-complete problem of [43]. Instances of this problem are circuits. These circuits are
treated as distributions, under the convention that the input to the circuit is uniformly distributed. Specif-
ically, YES instances are circuits representing a distribution that is close to uniform, and NO instances are
circuits representing a distribution that is far from uniform.

Definition 4.2.1 Define SDU def= 〈SDUY ,SDUN 〉 as

SDUY = {X| ∆(X, Un) < 1/n}, and

SDUN = {X| ∆(X, Un) > 1− 1/n},

where X is a circuit with n output bits, and Un is the uniform distribution on {0, 1}n.

We informally describe the reduction of [43] to SDU. This reduction originated from the work of [80].
Given a NISZK problem Π, this reduction maps instances x of Π to circuits X of SDU. The circuit uses

the simulator S from the proof of Π. Specifically, X executes S(x), and obtains a transcript. This transcript

4.2. PERFECT SIMULATION AND A COMPLETE PROBLEM FOR NIPZK 41

contains a simulated message of the prover, and a simulated reference string. If the verifier accepts in
this transcript, then X outputs the simulated reference string. Otherwise, X outputs the all-zero string.
Intuitively, this reduction works because if x is a YES instance, then the simulated reference string is almost
uniformly distributed, and thus X is a YES instance of SDU. Conversely, if x is a NO instance, then the
verifier rejects on most reference strings, and thus X is a NO instance of SDU.

The issue with the reduction of [43]. When we apply the above reduction to NIPZK problems, it is natural
that we should get a NIPZK-complete problem whose instances are circuits that represents the uniform
distribution. This is so because the circuit X outputs the simulated reference string, and when the simulation
is perfect, this string is uniformly distributed. Indeed, if we apply the above reduction to NIPZK problems
that have perfect completeness, then the verifier will accept, and thus we will get a circuit X that represents

the uniform distribution. However, if the underlying problem does not have perfect completeness, then the
distribution represented by X will be skewed. This will cause problems later, when we try to construct a
proof system and a simulator for our complete problem. Hence, this reduction does not apply to NIPZK.

To overcome the above issue, instead of working only with the reduction to SDU, our idea is to modify
both the reduction and the proof system for SDU at the same time.

The Error Shifting Technique. In its most general form, the error shifting technique shifts into the protocol

errors that would otherwise become simulation errors. This description is a very loose, but we chose it
because our technique can be applied in various different contexts, and in each of these contexts it takes a
different form. However, the following application will clarify our technique.

I The first step of the error shifting technique is to identify where the simulation error comes from,
and then isolate it. In our case, the error comes from the reduction: if the verifier rejects, then the circuit
X does not represent the uniform distribution. Thus, the error comes from the completeness error of the
underlying problem. To separate this error, we add an extra output bit to the circuit X . That is, X executes
the simulator, and it outputs the simulated reference string followed by an extra bit. This bit takes the value
1 if the verifier accepts, and 0 if the verifier rejects.

I The second step of the error shifting technique is to shift the error forward, to the completeness or
the soundness error of the protocol. In our case, from the circuit X to the protocol of our complete problem.
This step is not trivial because we cannot just use the protocol of [43] for SDU. Specifically, in this protocol
the prover sends a string r, and the verifier accepts if X(r) equals the reference string. If we use this idea in
our case, then we will get a simulation error. Thus, we modify this protocol by starting with the simulator,
and constructing the prover based on the simulator. Informally, the simulator samples the circuit X , and the
verifier accepts if the extra bit in this sample is 1. The prover simply mimics the simulator. This shows that
the error was shifted from X to the completeness error (of a new protocol).

The above reduction yields our NIPZK-complete problem UNIFORM. A formal description of the above

reduction and our proof system is given in the next section.

42 CHAPTER 4. PERFECT SIMULATION AND A COMPLETE PROBLEM FOR NIPZK

4.2.1 A Complete Problem for NIPZK

In this section we formalize the intuition given in the previous section, thus proving our first result.
We start with the definition of UNIFORM (UN). Recall that when we applied the error shifting technique

we got circuits X with an extra output bit. We use the convention that n + 1 denotes the number of output
bits of X . We need the following notation.

• TX is the set of outputs of X that end with a 1. Formally, TX
def= {x|∃r X(r) = x, and the suffix of

x is 1}. As we shall see, the soundness and completeness properties will imply that the size of TX is
large for YES instances of UN, and small for NO instances of UN.

• X ′ is the distribution on the first n bits that X outputs. That is, X ′ is obtained from X by taking
a random sample of X , and then outputting the first n bits. As we shall see, the zero-knowledge
property will imply that if X is a YES instance of UN, then X ′ is the uniform distribution on {0, 1}n.

Now, letting X be a circuit with n + 1 output bits, we say that X is β-negative if |TX | ≤ β · 2n. That is,
TX is small, and contains at most β ·2n strings. We say that X is α-positive if X ′ is the uniform distribution
on {0, 1}n and Prx←X [x ∈ TX] ≥ α. This implies that TX is large, and contains at least α · 2n strings.

Definition 4.2.2 The problem UNIFORM is defined as UN def= 〈UNY, UNN〉, where

UNY = {X|X is 2/3− positive}, and

UNN = {X|X is 1/3− negative}.

To prove that UN is NIPZK-complete we first show that the reduction from the previous section reduces
every NIPZK problem to UN.

Lemma 4.2.3 UN is NIPZK-hard.

Proof: Let Π = 〈ΠY,ΠN〉 be a NIPZK problem. Fix a non-interactive protocol 〈P, V 〉 for Π with com-
pleteness and soundness errors 1/3. Let rI denote the common reference string in 〈P, V 〉, and fix i such
that |rI | = |x|i for any x ∈ ΠY ∪ ΠN. Fix a simulator S for 〈P, V 〉. Since S is efficient, we can fix an
efficient transformation t and an integer ` such that on input x ∈ ΠY ∪ΠN the output of t(x) is a circuit S′

that executes S on inputs x and randomness rS of length |x|`. That is, t(x) = S′, and on input a string rS

of length |x|` the output of S′(rS) is the output of S(x; rS).
We show that Π Karp reduces to UN. That is, we define a polynomial-time Turing machine that on input

x ∈ ΠY ∪ ΠN outputs a circuit X such that if x ∈ ΠY, then X ∈ UNY, and if x ∈ ΠN, then X ∈ UNN.
The circuit X : {0, 1}|x|` → {0, 1}|x|i+1 carries out the following computation.

• Let rS be the |x|`-bit input to X , and let S′ = t(x). Execute S′(rS), and obtain S(x; rS) =
〈x, r′I ,m

′〉.

4.2. PERFECT SIMULATION AND A COMPLETE PROBLEM FOR NIPZK 43

• If V (x, r′I , m
′) = accept, then output the string r′I1 (i.e., the concatenation of r′I and 1). Otherwise,

output r′I0.

Now we analyze our reduction. Let x ∈ ΠY, and let X be the output of the above reduction on x.
We show that X is 2/3-positive. Consider the distribution on the output 〈x, r′I ,m

′〉 of S(x). Since S(x)
and 〈P, V 〉(x) are identically distributed, r′I is uniformly distributed. Thus, X ′ (i.e., the distribution on the
first |x|i output bits of X) is uniformly distributed. It remains to show that Pr[X ∈ TX] ≥ 2/3. This
immediately follows from the perfect zero-knowledge and completeness properties of 〈P, V 〉. That is, the
output of S is identically distributed to 〈P, V 〉(x), and V accepts in 〈P, V 〉 with probability at least 2/3.

Let x ∈ ΠN, and let X be the output of the above reduction on x. We show that X is 1/3-negative.
Assume towards contradiction that X is β-negative for some β < 1/3. We define a prover P ∗ that behaves as
follows on CRS rI . If rI1 ∈ TX , then there is an input rS to X such that X(rS) = rI1. By the construction
of X , there is randomness rS for the simulator such that S(x; rS) = 〈x, rI ,m

′〉, and V (x, rI ,m
′) = 1. In

this case P ∗ sends rS to V . If rI1 /∈ TX , then P ∗ fails. Notice that P ∗ makes V accept on any rI such that
rI1 ∈ TX . Since |TX | > 2|x|i/3, and since rI is uniformly chosen in 〈P ∗, V 〉, the probability that rI1 ∈ TX

is strictly greater than 1/3. Thus, V accepts in 〈P ∗, V 〉(x) with probability strictly greater than 1/3, and
contradiction to the soundness error of 〈P, V 〉. Hence, X is 1/3-negative.

To prove Theorem 4.0.1 it remains to give a NIPZK proof for UN.

Lemma 4.2.4 UN has a NIPZK proof with a deterministic verifier.

Proof: We start with our non-interactive proof for UN. This proof is based on our simulator, which we
describe later. On input X : {0, 1}` → {0, 1}n+1 and common reference string rI ∈ {0, 1}n the prover P

picks z according to the distribution X such that the n-bit prefix of z equals rI . Such a z exists because
X ′ (i.e., the distribution on the first n bits of X) is the uniform distribution when X ∈ UNY. The prover
uniformly picks r ∈ X−1(z), and sends r to the verifier V . The deterministic verifier accepts if X(r) = rI1,
and rejects otherwise. Our prover is based on the following simulator. Let S be a probabilistic, polynomial-
time Turing machine that on input X uniformly picks r′ ∈ {0, 1}`, and computes z′ = X(r′). The simulator
assigns the n bit prefix of z′ to r′I (i.e., the simulated reference string), and outputs 〈X, r′I , r

′〉.
Let X ∈ ΠY. We show that S perfectly simulates 〈P, V 〉. Consider the distribution S(X) on simulated

transcripts 〈X, r′I , r
′〉, and the distribution 〈P, V 〉(X) on the view 〈X, rI , r〉 of V . Since X ′ is uniformly

distributed over {0, 1}n, the string r′I obtained by the simulator is uniformly distributed over {0, 1}n. Since
rI is uniformly distributed, r′I and rI are identically distributed. It remains to show that r and r′ are identi-
cally distributed conditioned on rI = r′I . For each y ∈ {0, 1}n, we define By to be the set of all strings r̂ for
which the prefix of X(r̂) is y. Now, for any simulated reference string r′I , the randomness r′ chosen by the
simulator is uniformly distributed in Br′I

. Similarly, for any reference string rI the message of the prover is
a string r chosen uniformly from BrI . Hence, conditioned on rI = r′I , the strings r and r′ are identically

distributed. We conclude that S(X) and 〈P, V 〉(X) are identically distributed for any X ∈ ΠY.

44 CHAPTER 4. PERFECT SIMULATION AND A COMPLETE PROBLEM FOR NIPZK

Turning our attention to the completeness property, we show that V accepts X with probability at least
2/3. By the zero-knowledge property, the output 〈X, r′I , r

′〉 of S(X) is identically distributed to the view
〈X, rI , r〉 of V on X . Thus, it is enough to show that when choosing a transcript 〈X, r′I , r

′〉 according to
S(x) the probability that V (X, r′I , r

′) = 1 is at least 2/3. Since S uniformly chooses r′, and since X is
2/3-positive, the probability that X(r) ∈ TX is at least 2/3. Thus, the probability that the suffix of X(r) is
1 is at least 2/3. Hence, V accepts X with probability at least 2/3.

The soundness property follows easily. Let X ∈ UNN. Since X is 1/3-negative, |TX | ≤ 1/3 ·2n. Since
rI is uniformly distributed, the probability that rI1 ∈ TX is at most 1/3. Hence, if X ∈ UNN, then V

accepts X with probability at most 1/3.

4.3 A Hard Problem for Public-Coin PZK Proofs

In this section we use the error shifting technique to modify the reduction of [77] for public-coin HVSZK
proofs. Hence, we obtain a hard problem for the class of problems possessing public-coin HVPZK proofs.
We do not know if this problem is also complete, but we remark that even the similar problem SD0,1/2 is
not known to admit a HVPZK proof [77]. We start with motivation.

The reduction of [77] originated from the works of Fortnow and Aiello and Håstad [37, 3]. Informally,
given a problem Π that has a public-coin HVSZK proof, the reduction maps instances x of Π to pairs
of circuits 〈X0, X1〉. The circuits X0 and X1 are statistically close when x is a YES instance of Π, and
statistically far when x is a NO instance of Π.

The issue with this reduction is that it does not apply to the perfect setting. Specifically, when we apply

it to YES instances of a problem that has a public-coin HVPZK proof, we get a pair of circuits 〈X0, X1〉 that
are only statistically close, but not identically distributed. This is unnatural because the closeness between
X0 and X1 reflects the closeness of the simulation. Thus, in the perfect setting we expect X0 and X1 to be
identically distributed, as in SD0,1/2 (this problem is a variant of STATISTICAL-DISTANCE [77], which we
defined in Section 2.4.)

Definition 4.3.1 [77] The problem SD0,1/2 is the pair 〈SD0,1/2
Y , SD0,1/2

N 〉, where

SD0,1/2
Y = {〈X0, X1〉|∆(X0, X1) = 0}, and

SD0,1/2
N = {〈X0, X1〉|∆(X0, X1) ≥ 1/2}.

Sahai and Vadhan [77] were aware of this issue, and they addressed it by directly calculating the errors
of the underlying problem. However, their technique applies only in certain cases (for example, when
the underlying problem has a proof with perfect completeness). In the next section we will show how to
overcome this issue by using the error shifting technique. Essentially, we obtain a hard problem where YES
instances are pairs of circuits representing identical distributions, and NO instances are circuits representing

statistically far distributions. Formally, our hard problem is as follows.

4.3. A HARD PROBLEM FOR PUBLIC-COIN PZK PROOFS 45

Definition 4.3.2 The problem IDENTICAL DISTRIBUTIONS is ID def= 〈IDY, IDN〉, where

IDY = {〈X0, X1, Z〉|∆(X0, X1) = 0 and Pr[Z = 1] ≥ 2/3}, and

IDN = {〈X0, X1, Z〉|∆(X0, X1) ≥ 1/2 or Pr[Z = 1] ≤ 1/3}.

4.3.1 Modifying the Reductions for Public-Coin HVSZK Proofs

In this section we show that ID is hard for the class of problems admitting public-coin HVPZK proofs.
Using the error shifting technique we show that, essentially, we can treat SD0,1/2 as a hard problem for this
class. Starting with some background, we describe the reduction of [77].

Notation. Let 〈P, V 〉 be a public-coin HVPZK proof for a problem Π with a simulator S. Given a string x

we use v
def= v(|x|) to denote the number of rounds in the interaction between P and V on input x. That is,

in round i the prover P sends mi and V replies with a random string ri, until P sends its last message mv,
and V accepts or rejects. We denote the output of S(x) by 〈x, m1, r1, . . . , mv〉.

The reduction of [77] maps instances x of Π to pairs of circuits 〈X ′
0, X

′
1〉. These circuits are constructed

from the circuits Xi and Yi, defined as follows. The circuit Xi chooses randomness, executes S(x) using
this randomness, and outputs the simulated transcript, truncated at the i-th round. That is, Xi obtains
〈x,m1, r1, . . . , mv〉, and outputs 〈m1, r1, . . . , mi, ri〉. The circuit Yi is defined exactly the same, except
that it replaces ri with a truly random string r′i.

• Xi(r): execute S(x; r) to obtain 〈x,m1, r1, . . . ,mv〉. Output 〈m1, r1, . . . , mi, ri〉.

• Yi(r, r′i): execute S(x; r) to obtain 〈x,m1, r1, . . . , mv〉. Output 〈m1, r1, . . . , mi, r
′
i〉.

Notice that Xi and Yi represent the same distribution when x is a YES instance. This is so because S(x)
perfectly simulates the view of the verifier, and therefore ri is uniformly distributed, just like r′i. We define
X = X1 ⊗ · · · ⊗Xv. That is, X executes all the circuits Xi and outputs the concatenation of their outputs.
Similarly, we define Y = Y1 ⊗ · · · ⊗ Yv. Again, X and Y are identically distributed when x is a YES
instance. Now, the pair 〈X ′

0, X
′
1〉 is defined from 〈X, Y 〉 as follows. The circuit X ′

1 outputs 1 followed by
the output of Y . The circuit X ′

0 outputs the output of Z followed by the output of X , where Z is the circuit
that obtains polynomially many transcripts (by executing S(x), each time with a fresh random string), and
outputs 1 if the verifier accepts in the majority of these transcripts, and 0 otherwise.

The issue with the reduction of [77]. The above reduction does not apply to the perfect setting (except for
the case where 〈P, V 〉 have perfect completeness). This is so because there is a non-zero probability that Z

will output 0, in which case X ′
0 and X ′

1 will not represent the same distribution. To overcome this issue we
use the error shifting technique in two steps, just like we did in the previous section. Our goal is to show

that, essentially, SD0,1/2 is hard for the class of problems admitting public-coin HVPZK proofs.

46 CHAPTER 4. PERFECT SIMULATION AND A COMPLETE PROBLEM FOR NIPZK

As a first step, we separate the error that the circuit Z incurs. Thus, instead of including Z in the
circuits X ′

0 and X ′
1, our reduction simply maps an instance x of Π to the triplet 〈X, Y, Z〉. By the analysis

from [77], if x is a YES instance, then X and Y are identically distributed, and Z outputs 1 with high
probability. Such a triplet is a YES instance of our hard problem. Similarly, if x is a NO instance, then either
X and Y are statistically far, or Z outputs 0 with a high probability. Such a triplet is a NO instance of our
hard problem. The following lemma shows that IDENTICAL DISTRIBUTIONS (ID) is hard for the class of
problems admitting public-coin HVPZK proofs.

Lemma 4.3.3 (Implicit in [77]) For any problem Π = 〈ΠY, ΠN〉 possessing a public-coin HVPZK proof

there is a Karp reduction mapping strings x to circuits 〈X,Y, Z〉 with the following properties.

• If x ∈ ΠY , then ∆(X, Y) = 0 and Pr[Z = 1] ≥ 2/3.

• If x ∈ ΠN , then ∆(X, Y) ≥ 1/2 or Pr[Z = 1] ≤ 1/3.

Indeed, instances of ID are triplets of circuits 〈X,Y, Z〉, as opposed to pairs 〈X,Y 〉. Our goal is to show
that ID and SD0,1/2 are essentially the same. Hence, we continue to our second step.

Recall that the second step of the error shifting technique is to shift the error forward to the protocol.
However, SD0,1/2 is not known to have a PZK proof. Thus, our second step is to modify any PZK protocol
〈P, V 〉 for SD0,1/2 into a PZK protocol 〈P, V ′〉 for ID. That is, we take an arbitrary protocol 〈P, V 〉 for
SD0,1/2, and then we show that even if the input to this protocol is an instance 〈X,Y, Z〉 of ID (instead of
a pair 〈X, Y 〉), then the behavior of P and the modified verifier V ′ on input 〈X,Y, Z〉 is identical to the
behavior of 〈P, V 〉 on input 〈X, Y 〉. This will show that the two problems are essentially the same, and
therefore we will be done.

Our modification is as follows. On input 〈X, Y, Z〉 the first step of the modified verifier V ′ is to estimate
the value of Pr[Z = 1], and reject if this value is at most 1/3. If V ′ did not reject, then P and V ′ execute
〈P, V 〉 on input 〈X, Y 〉. This modification is a part of the error shifting technique because we shift the error
from the circuit Z into an arbitrary protocol 〈P, V 〉 for SD0,1/2.

We analyze the modified protocol 〈P, V ′〉 for our hard problem. We observe that V ′ is very unlikely to
reject if Pr[Z = 1] ≥ 2/3. We also observe that if the protocol continues, then either 〈X, Y, Z〉 is a YES
instance of our hard problem and ∆(X,Y) = 0, or 〈X,Y, Z〉 is a NO instance of our hard problem and
∆(X, Y) ≥ 1/2. Thus, in this case the behavior of P and V ′ on instances of our hard problem is identical
to the behavior of P and V on instances of SD0,1/2. This shows that although we did not prove that SD0,1/2

is hard for the class of problems admitting public-coin HVPZK proofs, it can be treated as such (because
any protocol for this problem can be immediately modified to a protocol with the same properties for ID).

4.4 Applications

In this section we show two applications of our results. The first one uses the error shifting technique to

show an equivalence between notions of zero-knowledge with respect to simulators that fail. The second

4.4. APPLICATIONS 47

shows that under certain restrictions NIPZK is closed under the OR operator. Notice that even in statistical
setting, where we have more techniques to work with, it is not clear how to prove (or disprove) this result.1

4.4.1 Obtaining Simulators That Do Not Fail

We use the error shifting technique to show that the notion of honest-verifier zero-knowledge where the
simulator is allowed to fail is equivalent to the one where it is not allowed to fail. This holds in both the
interactive and the non-interactive models, and regardless of whether the simulator runs in strict or expected
polynomial-time.

Starting with background, we recall that the notion of perfect zero-knowledge requires that the view of
the verifier be identically distributed to the output of the simulator [46]. Later, this notion was relaxed by
allowing the simulator to output fail with probability at most 1/2, and requiring that, conditioned on the
output of the simulator not being fail, it be identically distributed to the view of the verifier [28].

A known trick to remove the fail output is to execute the simulator for |x| times (where x is the input
to the simulator), and output the first transcript, or fail if the simulator failed in all |x| executions [39].
This works for statistical and computational zero-knowledge, but not for perfect zero-knowledge. Notice
that in all of these cases we actually introduce an extra error into the simulation, and we do not understand
why. Furthermore, despite the fact that important problems have PZK proofs (e.g., GRAPH-ISOMORPHISM,
QUADRATIC-RESIDUOUSITY [46, 41, 84]), all of these proofs have a simulator that outputs fail with
probability 1/2. Now we fix this issue.

The transformation. Let 〈P, V 〉 be a HVPZK proof for a problem Π, and let S be a simulator for 〈P, V 〉.
Notice that S may fail with some probability. We use the error shifting technique to obtain a simulator S′

that does not fail.

Recall that the error shifting technique is applied in two steps: we need to find where the error is coming
from, and then we shift it forward. For the first step, we observe that when S outputs fail, the verifier V

actually learns that S failed. This is something that V does not learn from the prover P (because transcripts
between P and V are never of the form fail). Intuitively, the error comes from the fact that P is not
showing V that S(x) may output fail with some probability. We are done with the first step. In the second
step we shift this error forward by letting P teach V that S(x) may output fail. That is, on input x,
the new prover P ′ executes S(x) for |x| times, and if S(x) = fail in all of these executions, then P ′

outputs fail. Otherwise, P ′ behaves like P . In other words, we shifted the error from the simulation to the
protocol. Notice that the execution of S(x) by P ′ may involve invoking V , but since the verifier is honest,
its code can be incorporated into P ′.

The new simulator S′ simply executes S, and if all executions failed, then it behaves just like P ′.
Namely, it outputs the transcript 〈x,fail; rV 〉, where rV is the randomness of V . Otherwise, S′ out-
puts a simulated transcript of S. Notice that we increased the completeness error by 1/2n, but by executing

1 [80] claimed that NISZK is closed under the OR operator, but this claim has been retracted.

48 CHAPTER 4. PERFECT SIMULATION AND A COMPLETE PROBLEM FOR NIPZK

S(x) polynomially many times, the probability that P ′ will fail can be made extremely small. We conclude
that 〈P ′, V 〉 is a PZK proof for Π with a simulator S′ that never fails.

4.4.2 Under Certain Restrictions NIPZK is Closed Under the OR Operator

We use our NIPZK-complete problem to show that under certain restrictions NIPZK is closed under the OR
operator. We remark that these restrictions are severe, but our goal is to show the usefulness of our complete
problem, rather than proving a closure result (in fact, even with these restrictions it is hard to see how to
prove this result).

Motivation. We want to construct a NIPZK proof where the prover and the verifier are given two instances
x and y of some problem Π ∈ NIPZK, and the verifier accepts only if either x or y are YES instances of

Π. Since we now have a NIPZK-complete problem, we can construct a protocol where the prover and the
verifier reduce x and y to circuits X and Y , respectively, and then work with these circuits.

A natural approach to design our protocol is to ask what is the difference between YES and NO instances
of UN, and then, based on this difference, to design a protocol and a simulator. As we saw, instances of UN
differ in their number of output strings that end with a 1. That is, |TX |+ |TY | is large if either X or Y is a
YES instance, and small if both X and Y are NO instances. Thus, it seems that we should use lower bound
protocols [45]. However, we avoid using these protocols because they incur error into the simulation, and
we do not know how to remedy this problem.

Thus, we take a different approach. Instead of focusing on the difference between YES and NO instances,
we focus on the simulation. That is, instead of starting with the protocol, taking care of completeness and
soundness, we start with the simulator, taking care of perfect zero-knowledge. Indeed, this approach is
implicit in Section 4.2, where we first modified the simulator, and then modified the prover to mimic the
simulator. This approach has the advantage that we retain perfect simulation, but on the other hand we are
forced to make restrictions in order to guarantee completeness and soundness.

The protocol. Recall that the prover and the verifier are given instances X and Y of UN, and the verifier
should accept if X ∈ UNY or Y ∈ UNY. As usual, we use n + 1 to denote the number of output bits of
X and Y . Since the main obstacle is how to achieve perfect simulation, we start with the zero-knowledge
property. That is, we start with the simulator, and then we design the protocol based on the simulator.

Consider a simulator that uniformly picks rX and rY , and computes z = X(rX)⊕Y (rY). The simulator
may not know which of X or Y is a YES instance of UN. However, the n-bit prefix of z is uniformly
distributed because either X ′ or Y ′ represent the uniform distribution. This observation allows us to use the
n-bit prefix of z as the simulated reference string.

Our simulator informs the following protocol: on reference string rI the prover sends rX and rY to the
verifier such that the n-bit prefix X(rX)⊕ Y (rY) equals rI . The issue with this protocol is that we need to

make two restrictions in order to prove completeness and soundness.

4.4. APPLICATIONS 49

Achieving completeness. Suppose that the verifier accepts only if the last bit of both X(rX) and Y (rY) is
1. This works when both circuits X and Y are YES instances of UN. However, if one of the circuits is a NO
instance of UN, then it is possible that all the strings outputted by this circuit end with a 0 (e.g, for any rX

the suffix of X(rX) is 0), and this will make V reject.
Since we do not know how to overcome this issue without introducing error into the simulation, we

add the restriction that instances of PUY be 1-positive. That is, for any circuit Z ∈ PUY, all the strings
that Z outputs have 1 as the rightmost bit. Intuitively, this restriction helps the simulator in identifying NO
instances. For example, if a sample of X ends with a 0, then X must be a NO instance. However, notice that

X could be a NO instance and still have outputs that end with a 1. Thus, this help is limited.
We redefine the simulator based on the above restriction. As before, the simulator uniformly picks rX

and rY , computes z = X(rX) ⊕ Y (rY), and if both X(rX) and Y (rY) end with a 1, then the simulator
uses the n-bit prefix of z to simulate the reference string. Otherwise, one of the samples ends with a 0. For
example, suppose that X(rX) ends with a 0. This implies that Y is a YES instance. Hence, the simulator
uses the n bit prefix of Y (rx) to simulate the reference string. Similarly, we redefine the verifier. That is,
when the verifier receives 〈rX , rY 〉 from the prover, it only checks that the n-bit prefix of Y (rY) equals to
the reference string, and that Y (rY) ends with a 1.

Achieving soundness. Notice that even when both X and Y are NO instances, there could be many com-
binations for X(rX) ⊕ X(rY). That is, for most reference strings rI a cheating prover may find rX and
rY such that the n bit prefix of X(rX) ⊕ Y (rY) equals rI , and both X(rX) and Y (rY) end with a 1. This
compromises the soundness property. Since we do not know how to overcome this issue without introducing
error into the simulation, we restrict the number of such pairs.

Discussion. We used our NIPZK-complete problem to show that under certain restrictions NIPZK is
closed under the OR operator. Indeed, we added severe restrictions to retain perfect simulation, but without
our complete problem it is not clear how to prove this result (even with these restrictions). Thus, we interpret
these restrictions as evidence that in the perfect setting there are few techniques to work with. Recall that
even in the statistical setting, where we have more techniques to work with, such closure result is not known.

Lemma 4.4.1 Let Π be a NIPZK problem with a proof 〈P ′, V ′〉, and let c ∈ N such that on input of length

n the reference string is of length nc. If 〈c, P ′, V ′〉 has perfect completeness and soundness error 21−nc/2,

then Π ∨Π has a NIPZK proof with perfect completeness, and soundness error 1/3.

Proof: Let 〈x0, x1〉 such that xi ∈ ΠY ∪ ΠN for each i ∈ {0, 1}, and let n = |x0|. We start with the case
where |x0| = |x1| because when we reduce x0 and x1 to UN we get circuits whose output length is equal.
As we will see, the general case follows easily using the same proof.

We construct a NIPZK protocol 〈P, V 〉 for Π ∨Π. Initially, P sets i = 0 if both x0 and x1 are in ΠY.
Otherwise, there is a unique i such that xi ∈ ΠN, and P fixes this i. In addition, for each i ∈ {0, 1} both P

and V reduce xi to an instance Xi of UN.

50 CHAPTER 4. PERFECT SIMULATION AND A COMPLETE PROBLEM FOR NIPZK

Recall that 〈c, P ′, V ′〉 is a NIPZK proof for Π such that on input of length n the reference string is of
length nc. By the properties of the reduction to UN, for each i ∈ {0, 1} the circuit Xi has nc + 1 output
gates and the following properties hold. If xi ∈ ΠY, then X ′

i is the uniform distribution on {0, 1}nc
, and

samples of Xi end with a 1. If xi ∈ ΠN, then |TXi | ≤ 2−(nc/2+1) · 2nc
= 2nc/2−1.

The protocol proceeds as follows. Recall that P initially computes i. Thus, the first step of P is to
uniformly choose a string ri, and assign y the output of Xi(ri), excluding the rightmost bit. On reference
string rI , if Xi(ri) = y0, then P uniformly chooses ri ∈ X−1

i
(rI1), and sends 〈r0, r1〉 to V . Otherwise,

Xi(ri) = y1, in which case P uniformly chooses ri ∈ X−1
i

(y1 ⊕ rI0), and sends 〈r0, r1〉 to V . The
verifier accepts if 〈r0, r1〉 are correctly computed. Namely, V computes X0(r0) and X1(r1), and if there
is i ∈ {0, 1} such that Xi(ri) ends with a 0 and Xi(ri) = rI1, then V accepts. Otherwise, if X0(r0) ⊕
X1(r1) = rI0 (that is, both X0(r0) and X1(r1) end with a 1), then V accepts. Otherwise, V rejects.

The completeness property of 〈P, V 〉 follows from its zero-knowledge property. Thus, we start the
simulator S for 〈P, V 〉. As in 〈P, V 〉, the simulator reduces 〈x0, x1〉 to 〈X0, X1〉. The simulator uniformly
chooses r0 and r1, and computes X0(r0) and X1(r1). If there is i ∈ {0, 1} such that Xi(ri) ends with
a 0 (i.e., Xi ∈ PUN), then S outputs 〈〈x0, x1〉, r′I , 〈r0, r1〉〉, where r′I equals the nc-bit prefix of Xi(ri).
Otherwise, S outputs 〈〈x0, x1〉, r′I , 〈r0, r1〉〉, where r′I equals the nc-bit prefix of X0(r0)⊕X1(r1). In both
cases r′I is uniformly distributed, and 〈r0, r1〉 are distributed as in 〈P, V 〉. Thus, S perfectly simulates
〈P, V 〉. Since S always outputs accepting transcripts, 〈P, V 〉 has perfect completeness.

We turn our attention to the soundness property. Let x0, x1 ∈ ΠN, and let 〈r0, r1〉 be the message
received by V . We consider two cases in which V accepts. In the first case there is i ∈ {0, 1} such that
Xi(ri) ends with a 0, and Xi(ri) = rI1. Since |TXi

| ≤ 2nc/2−1, and rI is uniformly distributed, it follows
that in the first case V accepts with probability at most 2 · PrrI [Xi(ri) = rI1] ≤ 2 · 2−(nc/2+1). The reason
we multiplied the probability by 2 is because a cheating P ∗ may use either X0 or X1. In the second case
the suffix of both X0(r0) and X1(r1) is 1, and X0(r0) ⊕ X1(r1) = rI0. In this case the probability over
rI that X0(r0) ⊕X1(r1) = rI0 is at most 1/4 because |TX0 | · |TX1 | ≤ 2nc/2−1 · 2nc/2−1 = 2nc

/4, and rI

is uniformly distributed. We conclude that in total V accepts with probability at most 1/4 + 2 · 2−(nc/2+1),
which is 1/3 for sufficiently large inputs.

Recall that in the beginning of this proof we considered the case where |x0| = |x1|. In this case the
length of the output of X0 equals that of X1. The general case can be treated exactly the same, except that
X0 and X1 are modified before the protocol begins. For example, if |x0| = n and |x1| = n + a (for some
a ∈ N), then we simply add (n + a)c − nc input gates to X0. These gates are outputted as the prefix of X0.
Call this new circuit X ′

0. Now both X ′
0 and X1 have (n + a)c + 1 output bits, and X ′

0 inherits the properties
of X0 (that is, for any α and β, if X0 is α-positive, then X ′

0 is α-positive, and if X0 is β-negative, then X ′
0

is β-negative). Thus, we can apply the proof as above. The lemma follows.

4.5. CONCLUSION AND OPEN QUESTIONS 51

4.5 Conclusion and Open Questions

We explained why reductions that apply to the statistical setting do not apply to the perfect setting. Using
the error shifting technique we modified these reductions, thus obtaining complete and hard problems, and
interesting applications. A natural open question that follows is whether IDENTICAL DISTRIBUTIONS, our
hard problem for the class of problems admitting public-coin HVPZK proofs, is also complete for this class.
An easier task would be to provide a HVPZK proof for ID that is unnecessarily public-coin (this question
was mentioned in [77]).

Chapter 5

The Round Complexity of Perfect
Zero-Knowledge Proofs

In Chapter 3 we characterized all the known problems admitting perfect zero-knowledge (PZK) proofs. The
fact that all of these problems admit 3-round public-coin protocols (which we called V -bit protocols) is an
intriguing phenomenon. Thus, a natural question that follows is whether all the problems admitting public-
coin PZK proofs have a constant number of rounds. Addressing this question is important because it may
explain this phenomenon, or alternatively, we may discover a new natural problem that has a PZK proof
with more than three rounds. Either of these results would be a major progress.

Another motivation to this question is the relationship between statistical and perfect zero-knowledge
proofs. Specifically, Ong and Vadhan [73] showed that statistical zero-knowledge proofs can be transformed
into ones that have a constant number of rounds. Hence, if the round complexity of PZK proofs cannot be
collapsed to a constant, then SZK 6= PZK, thus solving a long standing open question. Notice that when we
apply the transformation of [72] to PZK proofs, we get constant-round statistical zero-knowledge proofs.
That is, the zero-knowledge property is degraded. In the case that PZK proofs do not have a constant

number of rounds, we would get a tradeoff between privacy and the ability to prove assertions using only
a few messages. That is, either the prover uses polynomially many messages and it leaks no information,
or the prover uses a constant number of messages, but then it must leak some information. Goldreich and
Krawczyk [40] showed that a similar tradeoff occurs with public-coin zero-knowledge proofs: either the
verifier uses private coins, which makes it difficult for a cheating prover to prove false statements, or the
verifier uses public-coins, but then the prover is more likely to cheat the verifier.

5.0.1 Approach

Our goal is to show that if a problem has a public-coin PZK proof, then it has a PZK proof with a constant
number of rounds. Despite the importance of this problem and the interest in the round complexity of

interactive protocols in general (see Section 5.0.3), it has not been addressed before.

52

53

As a warm up, recall that Itoh, Ohta, and Shizuya [50] observed that in the protocols for NP, instance-
dependent commitment-schemes can replace bit commitment-schemes. Vadhan [87] observed that the same
applies to the protocol of [13] for AM. Now, assume that public-coin PZK problems admit instance-
dependent commitment-schemes, and that the schemes are perfectly hiding and constant-round. Since any
PZK problem has an AM proof [37, 3, 77], we could plug the scheme into the protocol of [13] for AM
and get a constant-round PZK proof. That is, we would collapse the round complexity of public-coin PZK
proofs to a constant.

Before we proceed, let us examine the difficulties lying ahead. Firstly, current constructions of instance-
dependent commitment schemes are only statistically or computationally hiding [63, 87, 70, 73, 23] (our
scheme from Chapter 3 is perfectly hiding, but it only applies to V -bit PZK protocols). Thus, it is not clear
at all whether perfectly-hiding schemes can be constructed from public-coin PZK proofs. Secondly, even
if such schemes exist, we need to construct ones that are also constant-round. Finally, obtaining constant-
round perfectly hiding instant-dependent schemes from public-coin PZK problems might be too strong of a
requirement. That is, we do not know if a weaker condition may suffice to collapse the round complexity of
public-coin PZK proofs to a constant.

5.0.2 Main results

Our first question was whether it is at all possible to obtain a perfectly hiding scheme. We answered this
question on the affirmative.

Theorem 5.0.1 If a problem admits an honest-verifier perfect zero-knowledge (HVPZK) proof, then it has

perfectly hiding instance-dependent commitment scheme. If the proof is constant-round (or public-coin),

then so is the scheme. The scheme is secure against honest receivers, and the sender is inefficient. The same

applies to HVSZK and HVCZK, in which case the scheme is statistically (respectively, computationally)

hiding.

Our scheme has the same requirements as the scheme of Vadhan [87]: we require hiding on YES in-
stances and binding on NO instances, we consider the honest-verifier case (as was done also in [70, 73]),
and since the sender is inefficient, we require that the scheme be simulatable. Notice that there are various
definitions for commitments and instance-dependent commitments in the literature, each tailored to a spe-
cific application. In our case the difficulty is in achieving a perfectly hiding scheme. Thus, in our definition
we observe that unlike in commitments schemes, where the sender always succeeds in producing a commit-
ment, in instance-dependent commitment-schemes this is only necessary on YES instances, but not on NO
instances. This observation allows us to achieve perfect hiding.

Since our scheme inherits its round complexity from the protocol, it does not collapse the round com-
plexity of public-coin PZK proofs to a constant. We conclude that the difficulty in collapsing the rounds of

public-coin PZK proofs is not in obtaining a perfectly hiding instance-dependent commitment scheme, but

54 CHAPTER 5. THE ROUND COMPLEXITY OF PERFECT ZERO-KNOWLEDGE PROOFS

rather in obtaining such a scheme that is also constant-round. But do we have to obtain such a scheme in or-
der to achieve this goal? Using the idea behind the zero-knowledge proof for GRAPH-ISOMORPHISM [41],
we show that indeed, the two questions are equivalent. That is, constant-round, perfectly hiding instance-
dependent commitment-schemes are not only sufficient, but also necessary to collapse the round complexity
of public-coin PZK proofs to a constant.

Corollary 5.0.2 A problem admits a constant-round, perfectly (respectively, statistically) hiding instance-

dependent commitment scheme if and only if it admits a constant-round HVPZK (respectively, HVSZK)

proof. The same applies to HVCZK if the problem admits a constant-round interactive proof.

This corollary yields a simple and elegant equivalence between zero-knowledge and instance-dependent
commitments. Recall that Vadhan [87] was the first to show an equivalence between zero-knowledge and
commitments, and this was recently improved by Ong and Vadhan [73] to schemes that have an efficient
sender and a standard binding property (as opposed to

(
2
1

)
-binding). The difference between our equivalence

to that of [73] is that the equivalence of [73] only applies to the statistical and the computational setting, but
it yields a scheme with additional properties, such as being constant-round and having an efficient sender.
In contrast, our equivalence applies in all settings (including the perfect), but since our scheme inherits its
properties from the protocol, it does not have any additional properties.

In our second attempt to construct a constant-round, perfectly hiding instance-dependent commitment
scheme, we combined the circuits of IDENTICAL DISTRIBUTIONS (our hard problem for the class of prob-
lems admitting public-coin PZK proofs) with the error shifting technique from Chapter 4. We were able to
construct a non-interactive, perfectly hiding scheme with a polynomial-time sender. Although this scheme
is not binding, for any polynomial p, the fraction of random inputs to the scheme that violates the binding
property can be made as small as 1/2p(n), where n is the input length.

Lemma 5.0.3 If a problem admits a public-coin HVPZK proof, then it has a non-interactive, perfectly

hiding instance-dependent commitment scheme with an efficient sender. Given common input x of length n,

the scheme is binding on all but 1/2n fraction of its random inputs.

Informally, this lemma shows that we can collapse the rounds of public-coin PZK proofs if we can make
sure that the prover does not choose its randomness from a small set. This relationship might be implicit
in other works [56, 73], but here we show that it holds for the case of public-coin PZK proofs. Also,
the literature offers a variety of techniques allowing two parties to jointly choose a random string (e.g.,
hashing [45, 28], interactive hashing [74, 27, 68], and random selection [14, 78]), and our lemma provides
an avenue where such techniques can be used.

As a first step towards making sure that the prover does not choose its randomness from a small set, we
defined a preamble. The first part of the preamble defines a set A which is big on YES instances and small

on NO instances. Intuitively, A represents all the choices of randomness for the sender, and it contains a

55

small subset B of strings that violate the binding property. The second part uses the set A to define a string
r such that on YES instances r can be any string in A, and on NO instances r is unlikely to be a string in B.
The preamble provides a framework for choosing randomness for the sender, while at the same time making
sure that perfect hiding is maintained.

To put the preamble concept to the test, we applied it to the simple cases of 3-round public-coin PZK
proofs and non-interactive perfect zero-knowledge (NIPZK) proofs. In both cases we constructed the first
part of the preamble, but we were only able to construct the second part under assumptions on the soundness
of the underlying problem. An interesting consequence of independent interest is that we use the circuits
of UNIFORM (our NIPZK-complete problem) in the commitment scheme of Naor [67]. This allows us to
obtain a new (essentially, non-interactive) instant-dependent commitment scheme with an efficient sender

for NIPZK problems admitting a small soundness error.

5.0.3 Related Work

There round complexity of interactive protocols has been extensively studied.

In the context of IP, Goldwasser and Sipser [45] showed that any interactive proof can be transformed
into a public-coin proof with essentially the same number of rounds. The famous collapse theorem of Babai
and Moran [6, 56] showed that for any AM problem (i.e., any problem with a constant-round public-coin
proof) the number of rounds can be collapsed to two. Informally, the idea is to let the verifier send its
randomness in advance, but at the same time play many copies of the protocol with the prover (in parallel).
To prevent an exponential growth in the size of the game tree, after each four rounds the verifier chooses
one branch on which the game will continue. We commented in Section 4.1 that this idea can be used to
obtain deterministic verifiers in non-interactive zero-knowledge proofs. However, we cannot use this idea to
collapse the rounds in interactive zero-knowledge proofs because it is not known how to simulate different
branches of the interaction.

For the relationship between AM and NP we refer the reader to [18, 5, 54, 65]. We mention that the
unbounded levels of the public-coin proof hierarchy are not believed to be contained in the bounded levels
of the polynomial-time hierarchy [2].

The round complexity of zero-knowledge protocols has always been of great interest (c.f., [53, 9], and
the recent works of [52, 64]). Fortnow [37], and Aiello and Håstad [3] showed that SZK ⊆ AM, and an
alternative proof was given in [77]. Since PZK ⊆ SZK, this means that PZK ⊆ AM. As for CZK, if one
way functions exist, then any IP proof can be turned into a CZK proof with essentially the same number
of rounds [13]. Thus, collapsing the rounds of CZK proofs essentially boils down to collapsing the rounds
of IP (equivalently, PSPACE [82]). We note that Goldreich and Krawczyk [40] showed that public-coin
CZK proofs with black-box simulators exist only for trivial problems (i.e., problems in BPP). This result
clearly extends to PZK proofs in particular, but since it assumes proofs with a negligible soundness error, it
does not apply here. A review on the round complexity of zero-knowledge arguments for NP can be found

in [11].

56 CHAPTER 5. THE ROUND COMPLEXITY OF PERFECT ZERO-KNOWLEDGE PROOFS

5.0.4 Organization

In Section 5.1 we show how to construct instance-dependent commitment schemes from zero-knowledge
protocols. In Section 5.2 we construct a scheme from the hard problem of [59], and in Section 5.3 we try to
fix the binding property of this scheme using our preamble.

5.1 Trivial Instance-Dependent Commitment Schemes

In this section we prove Theorem 5.0.1 by showing how to obtain a perfectly hiding instance-dependent
commitment scheme from any HVPZK proof. Our idea also applies to HVSZK and HVCZK proofs. As
a consequence, we get an equivalence between zero-knowledge and instance dependent commitments, thus
proving Corollary 5.0.2.

We start with our definition of instance-dependent commitment schemes. This definition has the same re-
quirements as the scheme of Vadhan [87]: we require hiding on YES instances and binding on NO instances,

we consider the honest-verifier case (as was done also in [70, 73]), and since the sender is inefficient, we
require that the scheme be simulatable. Notice that we do not care if the prover fails to produce commit-
ments on NO instances (because when x is a NO instance we only care about soundness). Thus, we allow the
sender to fail in the commit phase, and require that the failure probability be negligible on YES instances.

Definition 5.1.1 An instance-dependent commitment scheme for a problem Π = 〈ΠY , ΠN 〉 is a protocol

〈S,R〉 between a sender S (with input a bit b) and a receiver R. The randomness of R and S is denoted rS

and rR, respectively. The running time of R is polynomial in |x|, where x is the common input. The protocol

has two parts:

• The commit phase. This is the first part of the protocol. If both S and R follow their instructions, then

with probability at least 1−2−|x| over their randomness this stage ends successfully. The commitment
of S to b is denoted by 〈Sb, R〉(x). It contains x, the messages exchanged in this phase, and rR.

• The reveal phase. This is the second part of the protocol. In this part S opens the commitment to b

by sending b and rS to R. The receiver either accepts or rejects b. In this stage the view of the receiver

is simply denoted 〈rS , b〉.

The protocol satisfies three properties:

Hiding. 〈S, R〉 is perfectly (respectively, statistically, computationally) hiding on ΠY if {〈S0, R〉(x)}x∈ΠY

and {〈S1, R〉(x)}x∈ΠY
are identical (respectively, statistically indistinguishable, computationally indistin-

guishable).

Binding. 〈S,R〉 is statistically binding on ΠN if for any function S∗ and common input x ∈ ΠN , the

probability over rR that R accepts both 0 and 1 in the reveal phase is at most 1/2|x|.

5.1. TRIVIAL INSTANCE-DEPENDENT COMMITMENT SCHEMES 57

Simulation (against an honest receiver). 〈S,R〉 is perfectly (respectively, statistically, computationally)
simulatable against the honest receiver if there is a probabilistic Turing machine M that runs in time poly-

nomial in x such that for any b it holds that {M(x, b)}x∈ΠY
and {〈〈Sb, R〉(x), 〈rS , b〉〉}x∈ΠY

are identical

(respectively, statistically indistinguishable, computationally indistinguishable).

We start with the forward direction of Corollary 5.0.2.

Lemma 5.1.2 If a problem admits a perfectly hiding instance-dependent commitment scheme, then it has a

HVPZK proof. If the scheme is constant-round (or public-coin), then so is the HVPZK proof.

Proof: We use the idea behind the proof systems for GRAPH-ISOMORPHISM [41]. That is, the prover

commits to the bit 0, and the verifier replies with a random bit b. The verifier accepts only if the prover
opens the commitment to the bit b. Soundness follows from the fact that the commitment is binding on NO
instances. The hiding property of the scheme guarantees that the same commitment can be opened to both
0 and 1, and thus the protocol is complete. The protocol is HVPZK because the simulator can guess b, and
then simulate a commitment to b with the honest receiver by executing M(x, b), where M is guaranteed
by the simulation requirement from Definition 5.1.1. Notice that the fact that the scheme may fail does not
affect the perfect simulation because, just like the prover, the simulator will fail in the commit phase.

The above proof also applies to HVSZK problems, but it may not apply HVCZK because the prover
may not be able to open commitments to both 0 and 1. Instead, we can plug the instance-dependent commit-
ment scheme in the protocol of [13] for AM, and if the underlying problem has a constant round interactive
proof, then we get a constant-round public-coin HVCZK proof. Notice that in all cases we can apply the
transformation of [28] to the constant-round honest-verifier zero-knowledge proof, and obtain a constant-
round zero-knowledge proof.

We proceed to prove Theorem 5.0.1 by showing how to construct instance-dependent commitment
schemes from zero-knowledge protocols. Combining this with the above lemma, we obtain Corollary 5.0.2.
Again, we deal with HVPZK, but the proof easily extends to HVSZK and HVCZK.

Proof of Theorem 5.0.1: Let Π be a problem admitting a constant-round HVPZK proof 〈P, V 〉. Since
we deal with the honest verifier, the completeness and soundness error can be reduced to 1/2n. We use
〈P, V 〉 to construct an instance-dependent commitment scheme for Π. The idea is to use the soundness

property of 〈P, V 〉 to obtain binding, the completeness and zero-knowledge properties to obtain hiding, and
the zero-knowledge property to obtain simulation.

Formally, let Sb denote the sender with a bit b, let R to denote the receiver, and let x denote the input.
In the commit phase S and R execute P and V on input x, respectively. There are two cases.

• If V accepts, then the sender does not send b, and the commit phase terminates successfully. Notice
that the bit b takes no part in the execution of the commit phase. In the reveal phase the sender simply

reveals b (without sending its randomness), and the receiver accepts.

58 CHAPTER 5. THE ROUND COMPLEXITY OF PERFECT ZERO-KNOWLEDGE PROOFS

• If V rejects, then both the commit and the reveal phases terminate. That is, in the commit phase the
sender sends fail, and in the reveal phase the sender does not send anything and the receiver rejects.

We verify the properties of the scheme. Let n
def= |x|. If x is a NO instance, then the scheme is binding

because R rejects with probability at least 1− 2−n over rR. If x is a YES instance and both S and R follow
their instructions, then the commit phase terminates successfully because V accepts x with probability at
least 1 − 2n over the randomness of S and R. Since S does not send b in the commit phase, the scheme
is perfectly hiding. Notice that with probability at most 1/2n the sender fails in the commit phase, but the
bit b is still hidden. The simulator M for 〈S, R〉 simply mimics the sender, and it can be easily constructed
from the HVPZK simulator S of 〈P, V 〉. Formally, M(x, b) obtains a transcript 〈x, m1,m2, . . . ,mv; rV 〉
of S(x), and if V accepts in this transcript, then M outputs 〈〈x,m1,m2, . . . , mv; rV 〉, 〈ε, b〉〉, where ε is the
empty string, and b is the bit of the sender. Otherwise, just like the prover, it adds the fail message to the
transcript, and outputs 〈〈x,m1,m2, . . . , mv,fail; rV 〉, ε〉. ¤

Notice that in the above proof S is a HVPZK simulator, and thus M perfectly simulates the commitment.
However, although b is not involved in the commit phase, if S is a HVSZK or a HVCZK simulator, them
M will only statistically or computationally simulate the commit phase, and thus the hiding property will
be statistical or computational, respectively.

5.2 Instance-Dependent Commitments from Hard Problems

In this section we prove Lemma 5.0.3 by constructing a perfectly hiding instance-dependent commitment
scheme. Although our scheme is not binding, the binding property holds on almost all the inputs, and this

shows that we can collapse the rounds of public-coin PZK proofs if we can make sure that the prover does
not choose its randomness from a small set.

Since we have a hard problem for the class of problems admitting public-coin HVPZK proofs, we can
use the approach of Vadhan [87], which utilizes complete problems (or similar characterizations) to construct
the scheme. That is, we use the circuits of our problem IDENTICAL DISTRIBUTIONS (ID) from Section 4.3.
Recall that instances of ID are triplets 〈X0, X1, Z〉 of circuits, and as we explained in Section 4.3 the circuit
Z can be ignored because in any zero-knowledge proof (or an instance-dependent commitment scheme) for
ID the verifier can sample Z and reject immediately if Pr[Z = 1] ≤ 1/3. Thus, throughout this chapter,
when we refer to ID, we actually refer to instances 〈X0, X1〉 of SD0,1/2. That is, as YES instances X0 and
X1 represent the same distribution, and as NO instances they represent statistically far distributions.

5.2.1 A Perfectly Hiding Scheme That is Almost Binding

Our goal is to construct a constant-round, perfectly hiding instance-dependent commitment scheme for ID.

Micciancio and Vadhan [63] showed that SD0,1 has such a scheme: a commitment to the bit b is a random

5.2. INSTANCE-DEPENDENT COMMITMENTS FROM HARD PROBLEMS 59

sample of Xb. With respect to ID, this idea guarantees perfect hiding on YES instances because X0 and X1

represent the same distribution, and thus it is impossible to determine b from y. However, this idea does not
guarantee binding on NO instances of ID because there could be r and r′ such that X0(r) = X1(r′), which
may allow the sender to open y as a commitment to both 0 or 1 .

Our idea is to use multiple intertwined samples. That is, we use n = |〈X0, X1〉| additional samples, and
the string r appears in all of them. Formally, to commit to a bit b the prover chooses n + 1 random strings

r, r1, . . . , rn, and it sends to the verifier the commitment ~y = 〈Xb(r), Xb(r ⊕ r1), . . . , Xb(r ⊕ rn)〉. As
before, in the reveal phase the prover sends b and r, r1, . . . , rn, and the verifier checks that ~y was computed
correctly. This scheme is described in Figure 5.1.

An instance-dependent scheme 〈S, R〉

Common input: a pair of circuits〈X0, X1〉. Let n = |〈X0, X1〉|.
Private input for S: a bit b.

The sender S commits to a bit b as follows:

1. S uniformly chooses a string r, and computes y
def= Xb(r).

2. S uniformly chooses strings r1, . . . , rn, and computes yi
def=

Xb(r ⊕ ri).

3. S sends ~y
def= 〈y, y1, . . . , yn〉 to the receiver R.

In the reveal phase S sends r, r1, . . . , rn to R.

Figure 5.1: A perfectly hiding scheme whose binding property holds on almost all the random inputs.

The first observation about the modified scheme is that if r, r1, . . . , rn are uniformly chosen, then the
strings r, r ⊕ r1, . . . , r ⊕ rn are also uniformly chosen and independent. Thus, the modified scheme retains
the perfect hiding property. The second observation is that the modified scheme is not binding. However,
notice that in the previous scheme the sender could cheat using any pair 〈r, r′〉 for which X0(r) = X1(r′),
and many such pairs may exist. In contrast, in the modified scheme the sender can cheat using only a
small fraction of the strings r1, . . . , rn, regardless of the number of pairs 〈r, r′〉 for which X0(r) = X1(r′)
(intuitively, replacing X0(r) with X1(r′) affects the rest of the samples, which requires a cheating sender
to adjust the strings r1, . . . , rn). Hence, ~y cannot be opened as a commitment to both 0 and 1, except for a
small fraction of the strings r1, . . . , rn. To formalize this, we start with one sample.

Lemma 5.2.1 Let X0 and X1 be circuits. Let r and r′ be strings such that X0(r) = X0(r′), and let

α
def= ∆(X0, X1). If r1 is uniformly chosen, then the probability that X0(r ⊕ r1) = X1(r′ ⊕ r1) is at most

1− α.

60 CHAPTER 5. THE ROUND COMPLEXITY OF PERFECT ZERO-KNOWLEDGE PROOFS

Proof: We use two sets in our analysis. The first set contains strings y that are more likely to be outputted
by X0 than by X1, and the second set is defined analogously. Formally,

X+
0

def= {y|Pr[X0 = y] ≥ Pr[X1 = y]}, and X+
1

def= {y|Pr[X1 = y] > Pr[X0 = y]}.

Using these sets we upper bound the probability that X0(r ⊕ r1) = X1(r′ ⊕ r1).

Prr1 [X0(r ⊕ r1) = X1(r′ ⊕ r1)]

= Prr1 [(X0(r ⊕ r1) = X1(r′ ⊕ r1)) ∧X1(r′ ⊕ r1) /∈ X+
0] +

Prr1 [(X0(r ⊕ r1) = X1(r′ ⊕ r1)) ∧X1(r′ ⊕ r1) ∈ X+
0].

Clearly, the first expression in the above sum is upper bounded by Prr1 [X1(r′ ⊕ r1) /∈ X+
0]. The same

applies to the second expression, but we use the equality in this expression to replace X1(r′ ⊕ r1) ∈ X+
0

with X0(r ⊕ r1) ∈ X+
0 . Hence, we get that

Prr1 [(X0(r ⊕ r1) = X1(r′ ⊕ r1)) ∧X1(r′ ⊕ r1) /∈ X+
0] +

Prr1 [(X0(r ⊕ r1) = X1(r′ ⊕ r1)) ∧X1(r′ ⊕ r1) ∈ X+
0]

≤ Prr1 [X1(r′ ⊕ r1) /∈ X+
0] + Prr1 [X0(r ⊕ r1) ∈ X+

0]

= 1− Prr1 [X1(r′ ⊕ r1) ∈ X+
0] + Prr1 [X0(r ⊕ r1) ∈ X+

0].

Now we use a fact that follows from the definition of statistical distance (see Fact 3.1.9 in [86]). According
to this fact, ∆(X0, X1) = Pr[X0 ∈ X+

0]− Pr[X1 ∈ X+
0]. Thus, since r and r′ are fixed, we get that

∆(X0, X1) = Prr1 [X0(r ⊕ r1) ∈ X+
0]− Prr1 [X1(r′ ⊕ r1) ∈ X+

0].

Since ∆(X0, X1) = α, we get that Prr1 [X0(r ⊕ r1) = X1(r′ ⊕ r1)] ≤ 1− α.

It follows that by taking more samples, we can reduce the number of strings that allow a cheating sender
to open commitments to both 0 and 1. Formally, let X0 and X1 be circuits on inputs of length m, and let
n = |〈X0, X1〉|. We claim that for any r and r′, if r1, . . . , r2n are uniformly chosen, then with probability
at most 2−n it holds that

〈X0(r), X0(r ⊕ r1), . . . , X0(r ⊕ r2n)〉 = 〈X1(r), X1(r ⊕ r1), . . . , X1(r ⊕ r2n)〉.

This is so because by Lemma 5.2.1, the probability over r1, . . . , r2n that the above equality holds is at most
(1 − α)2n ≤ 2−2n (recall that α = ∆(X0, X1) ≥ 1/2 when 〈X0, X1〉 is a NO instance of ID). Since there
are at most 22m ≤ 2n pairs 〈r, r′〉 for which X0(r) = X1(r′), our scheme is not binding with probability at

most 2n · 2−2n ≤ 2−n. Lemma 5.0.3 follows.

5.3. A PREAMBLE FOR JOINTLY CHOOSING RANDOMNESS 61

5.3 A Preamble for Jointly Choosing Randomness

In the previous section we constructed a scheme that is not binding if the sender chooses its randomness
from a small set. In this section we define a preamble that provides a framework for choosing randomness
for the sender, while at the same time making sure that perfect hiding is maintained. Such a preamble would
fix the binding property of our scheme, thus collapsing the round complexity of public-coin PZK proofs to a
constant. We then test the preamble on the simple cases of 3-round public-coin PZK proofs (Section 5.3.1)
and NIPZK proofs (Section 5.3.2), and obtain interesting consequences.

Motivation. Since the randomness of our scheme is chosen by the sender, a cheating sender may be able
to open the commitment to both 0 and 1. Hence, it makes sense to restrict the randomness used by the
sender. In the statistical setting Goldreich and Vadhan [44] used the hashing technique of Goldwasser and
Sipser [45], whereby one party chooses a hash function h, and the other party is restricted to strings r such
that h(r) = 0. Indeed, forcing the sender to use randomness from the small set h−1(0) will make our
scheme binding, but in the perfect setting it compromises the hiding property (a similar issue occurs in [70],
where the interactive hashing technique due to Ding, Harnik, Rosen, and Shaltiel [32] is used; interactive
hashing was introduced by Naor, Ostrovsky, Venkatesan, and Yung [68]).

Thus, we need an instance-dependent random-selection protocol. That is, a protocol that would restrict
the randomness of the sender in a way that depends on the common input. We formalize this using a

preamble. The first part of the preamble defines a set A which is big on YES instances and small on NO

instances. Intuitively, A represents all the choices of randomness for the sender, and it contains a small
subset B of strings that violate the binding property. The second part uses the set A to define a string r such
that on YES instances r can be any string in A, and on NO instances r is unlikely to be a string in B. More
formally,

1. Defining a set. Let x be an instance of ID, and let p(n) denote the length of the random input to
our scheme. The sender and the receiver execute a protocol that defines a set A ⊆ {0, 1}p(n), where
n

def= |x|. If x is a YES instance, then |A| = 2p(n), and if x is a NO instance, then A ¿ 2p(n).

2. Randomizing the set. Let B ({0, 1}p(n) be the set of “bad” strings (those that violate the binding

property of our scheme). Using A the parties define a string r. If x is a YES instance, then r can
equally be any string in A = {0, 1}p(n), and if x is a NO instance, then r is unlikely to be in B.

Suppose that we could construct such a preamble for ID. We could then execute S and R from our
scheme in Figure 5.1, and have S commit to its bit b using r as randomness. If x is a YES instance, then r

can be any string in A, and thus ~y perfectly hides b. If x is a NO instance, then r /∈ B with high probability

over the randomness of the receiver, and thus ~y binds the sender to b.

62 CHAPTER 5. THE ROUND COMPLEXITY OF PERFECT ZERO-KNOWLEDGE PROOFS

5.3.1 The Case of 3-round Public-Coin PZK Proofs

Our goal is to construct a preamble for any problem that admits a public-coin PZK proof. Since we do
not know how to do it, we deal with the simple case of 3-round public-coin PZK proofs. Notice that the
preamble must have an efficient sender, or else we could directly apply Theorem 5.0.1 to the 3-round public-
coin PZK proof, and obtain a constant-round, perfectly hiding instance-dependent commitment-scheme.

Consider a 3-round, public-coin PZK proof 〈P, V 〉 with a simulator M , and let 〈x, m1, r1,m2〉 denote
the output of M(x). That is, on input x the prover sends m1, the verifier sends r1, the prover replies
with m2, and based on these messages the verifier accepts of rejects. To simplify the presentation, we let
|r1| = n

def= |x|, and denote by nc the length of the random input to our commitment scheme 〈S,R〉(x).

Preamble - Step 1. The first step of our preamble is to define a set A. This can be done by having the
sender execute M(x), obtain a transcript 〈x,m1, r1,m2〉, and send m1 to the receiver. We define A to be
the set of all r1 such that M(x) = 〈x,m1, r1,m2〉 and V (x, m1, r1,m2) = accept. Actually, we want A

to contain strings of length nc. Thus, we let the sender sample M for nc−1 times, obtain a vector ~r of nc−1

messages r1, and send a vector of nc−1 messages m2 to the receiver. Suppose that 〈P, V 〉 has soundness

error 1/2 and perfect completeness. Thus, if x is a YES instance, then A = {0, 1}nc
, and if x is a NO

instance, then A contains at most a 1/2nc−1 fraction of the strings in {0, 1}nc
.

Preamble - Step 2. The second step of our preamble is to define a string r that would later be used by
the sender in our commitment scheme. Let B be the set of all strings that violate the binding property of
our scheme. By Lemma 5.0.3, B contains at most a 1/2n fraction of the strings in {0, 1}nc

. We remark
that if A ∩ B = ∅, then we could simply define r = ~r (i.e., the randomness for S is the concatenation
of the nc messages r1), but of course, this may not be the case. Suppose that 〈P, V 〉 has a very small
soundness error of 1/2n−(n−c+2)/2. In such a case we can let the receiver send a random string r′ to the
sender, and define r

def= ~r ⊕ r′. When x is a NO instance the probability that r ∈ B is at most |A| · 1/2n =
(2n/2n−(n−c+2)/2)nc−1

/2n = 2−n/2.

Thus, if the sender in our scheme uses r as its randomness, then the scheme is binding on NO instances.
If x is a YES instance, then r is hidden from the receiver, and thus our scheme is perfectly hiding. We
can remove the assumption on perfect completeness by allowing the sender to fail (this happens with small
probability because, after executing M many times, the sender is likely to obtain nc accepting transcripts).
Unfortunately, we do not know how to remove the restriction on the soundness.

5.3.2 The Case of Non-Interactive PZK Proofs

Our goal was to collapse the number of rounds in public-coin PZK proofs to a constant. We could achieve
this goal if our scheme was binding. We tried to construct a preamble that would fix the binding property,

but we were unsuccessful even for the simple case of 3-round public-coin PZK proofs.

5.3. A PREAMBLE FOR JOINTLY CHOOSING RANDOMNESS 63

In this section we want to provide a better understanding into the difficulties involved. Thus, we try
to construct the preamble for the other simple case of NIPZK proofs (which can be viewed as a 2-round,
public-coin HVPZK proofs). Although we could not construct the preamble, our investigation yields two
interesting consequences. Firstly, we show how to use the circuits from the study of NIPZK in the commit-
ment scheme of Naor [67]. This leads to a new perfectly-hiding instance-dependent commitment for NIPZK
problems with a small soundness error. Secondly, we show how to use hash functions without damaging the
hiding property. This is useful because, as we mentioned earlier, most hashing techniques (e.g., [45, 32]) do
not apply in the perfect setting.

Since we are dealing with the non-interactive setting, our underlying problem will be UNIFORM (UN),
our NIPZK-complete problem from Section 4.2. Recall that YES instances of UN are circuits that repre-
sent the uniform distribution, and NO instances are circuits that have a small range. Actually, the circuits

have an additional output bit, but it can be ignored (in the same way that we ignored the circuit Z of the
problem IDENTICAL DISTRIBUTIONS). Thus, throughout this section we will be working with a variant of
STATISTICAL DISTANCE FROM UNIFORM (SDU), the NISZK-complete problem of [43].

Definition 5.3.1 Define SDU′ def= 〈SDU′Y , SDU′N 〉 as

SDU′Y = {X| ∆(X, Un) = 0}, and

SDU′N = {X| Rng(X) < 2n/3},

where X is a circuit with n output bits, and Un is the uniform distribution on {0, 1}n.

Motivation. Our goal is to construct a constant-round, perfectly hiding instance-dependent commitment
scheme, this time for SDU′. Again, the scheme must have an efficient sender, or else it trivially exists by
Theorem 5.0.1 (because NIPZK proofs are constant-round HVPZK proofs in particular).

As a warm up, consider the commitment scheme of Naor [67], which uses a pseudo-random generator
G : {0, 1}n → {0, 1}3n. In this scheme the receiver sends a random string r ∈ {0, 1}3n to the sender.
The sender chooses a random string r′ ∈ {0, 1}n, and commits to 0 by sending G(r′) ⊕ r, and to 1 by
sending G(r′). To see why this scheme is binding against computationally unbounded senders, consider
a commitment G(r′). Since the range of G contains at most a 1/22n fraction of the strings {0, 1}3n, the
probability that G(r′)⊕ r falls back into Rng(G) (that is, G(r′)⊕ r = G(r′′) for some r′′) is at most 2−2n.
Thus, the scheme is binding with probability at least |Rng(G)| · 2−2n = 2−n.

We apply this idea to instances of SDU′. That is, on circuit X with n output bits the receiver sends
a uniformly chosen r ∈ {0, 1}n, and the sender commits to 0 by sending X(r′) ⊕ r, and to 1 by sending
X(r′). The resulting instance-dependent scheme is perfectly hiding on YES instances. If SDU′ has a

very small soundness error of 2−n/4, then its NO instances satisfy |Rng(X)| ≤ 2n/4, and by the same

64 CHAPTER 5. THE ROUND COMPLEXITY OF PERFECT ZERO-KNOWLEDGE PROOFS

argument as above, the probability over r that there are r′ and r′′ such that X(r′) ⊕ r = X(r′′) is at most
|Rng(X)| · 2−3n/4 ≤ 2−n/2. Of course, the range of X may be bigger, and thus we cannot use this idea.

Constructing a Preamble. We modify the scheme of Naor [67] using hash functions. Intuitively, the
sender will commit to 0 by sending h′(r), and to 1 by sending X(r0). The string r0 is chosen by the sender,
the string r is chosen by the receiver, and h′ is a hash function chosen jointly. The idea is that, if X is a
NO instance, then it has a small range, and thus it is unlikely that h′(r) ∈ Rng(X). The scheme guarantees
perfect hiding on YES instances, but as we shall see it does not guarantee binding. We formally describe our
scheme using the preamble idea.

Let X be a circuit with n output bits, let c be some constant, and define X ′ def= ⊕nc
X as the circuit that

takes nc−1 strings ri, and outputs X(r1), . . . , X(rnc−1). The circuit X ′ has nc output gates. If X is a YES

instance, then X ′ represents the uniform distribution, and if X is a NO instance, then X ′ has a small range.

Preamble - Step 1. In the first step the sender picks two samples of X ′, and sends the XOR to the receiver.
That is, the sender picks r0, r1, computes h0 = X ′(r0), h1 = X ′(r1), and sends y = h0⊕h1 to the receiver.

Using the notation of our preamble, A is a set of hash functions. If X is a YES instance, then A = {0, 1}nc
,

and if X is a NO instance, then A contains a small fraction of {0, 1}nc
.

Preamble - Step 2. In the second step the receiver replies with a uniformly chosen hash function h and an
input r for h. The sender uses h to define h′ = h0 ⊕ h. Informally, this ensures that h′ does not belong to
the set B of hash functions that do not evenly spread their domain over their range.

Now we execute the scheme. The sender commits to b = 0 by sending h′(r), and to b = 1 by sending
X(r0). If X is a YES instance, then both h′ and r0 are hidden from the receiver, and the scheme is hiding.
If X is a NO instance, then both X and X ′ have small ranges. Since h′ is a good hash function, it is unlikely
to map r to Rng(X), and thus the scheme should be binding. Unfortunately, this is not the case because,
although h′ is likely to be a good hash function, there are |Rng(X′)| possibilities for h0. In other words,
although h′ is good, h′(r) may fall into Rng(X).

5.4 Conclusion

We initiated a preliminary investigation into the question whether the round complexity of public-coin PZK
proofs can be collapsed to a constant. We gave the first perfectly hiding instance-dependent commitment
scheme, and showed that obtaining such a scheme that is also constant round is equivalent to achieving
this collapse. We then tried to construct a constant-round, perfectly hiding scheme using the circuits from
the hard problem for public-coin PZK proofs [59]. Although we could not fix the binding property of
the scheme, our attempts had some interesting consequences, including a connection between choosing
the randomness of the sender and collapsing the rounds, the definition of the preamble, the difficulty in
constructing the preamble, and the use of the circuits of the NIPZK-complete problem in the scheme of
Naor [67].

Bibliography

[1] Martı́n Abadi, Joan Feigenbaum, and Joe Kilian. On hiding information from an oracle. J. Comput.

Syst. Sci., 39(1):21–50, 1989.

[2] William Aiello, Shafi Goldwasser, and Johan Håstad. On the power of interaction. Combinatorica,
10(1):3–25, 1990.

[3] William Aiello and Johan Håstad. Statistical zero-knowledge languages can be recognized in two
rounds. J. of Computer and System Sciences, 42(3):327–345, June 1991.

[4] Dana Angluin and David Lichtenstein. Provable security in cryptosystems: a survey. Technical Report
288, Department of Computer Science, Yale University, 1983.

[5] Vikraman Arvind and Johannes Köbler. On pseudorandomness and resource-bounded measure. Theor.

Comput. Sci., 255(1-2):205–221, 2001.

[6] László Babai. Trading group theory for randomness. In STOC, pages 421–429, 1985.

[7] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, pages 106–115, 2001.

[8] Boaz Barak and Yehuda Lindell. Strict polynomial-time in simulation and extraction. In STOC ’02:

Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 484–493, New
York, NY, USA, 2002. ACM Press.

[9] Boaz Barak, Yehuda Lindell, and Salil Vadhan. Lower bounds for non-black-box zero knowledge. J.

Comput. Syst. Sci., 72(2):321–391, 2006.

[10] M. Bellare, S. Micali, and R. Ostrovsky. The (true) complexity of statistical zero knowledge. In

STOC ’90: Proceedings of the twenty-second annual ACM symposium on Theory of computing, pages
494–502, New York, NY, USA, 1990. ACM.

[11] Mihir Bellare, Markus Jakobsson, and Moti Yung. Round-optimal zero-knowledge arguments based

on any one-way function. In EUROCRYPT, pages 280–305, 1997.

65

66 BIBLIOGRAPHY

[12] Mihir Bellare, Silvio Micali, and Rafail Ostrovsky. Perfect zero-knowledge in constant rounds. In
22nd STOC, pages 482–493, 1990.

[13] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Håstad, Joe Kilian, Silvio Micali, and
Phillip Rogaway. Everything provable is provable in zero-knowledge. In CRYPTO, pages 37–56,
1988.

[14] Manuel Blum. Coin flipping by telephone - a protocol for solving impossible problems. In COMPCON,
pages 133–137, 1982.

[15] Manuel Blum. How to prove a theorem so no one else can claim it. In Proceedings of the ICM,pp,
pages 1444–1451, 1986.

[16] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge proofs and their
applications. In Proceedings of the 20th STOC, ACM, 1988.

[17] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giussepe Persiano. Noninteractive zero-
knowledge. SIAM J. Comput., 20(6):1084–1118, 1991.

[18] Ravi B. Boppana, Johan Håstad, and Stathis Zachos. Does co-NP have short interactive proofs? Inf.

Process. Lett., 25(2):127–132, 1987.

[19] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge. J.

Comput. Syst. Sci., 37(2):156–189, 1988.

[20] Gilles Brassard and Claude Crépeau. Zero-knowledge simulation of boolean circuits. In CRYPTO,
pages 223–233, 1986.

[21] Gilles Brassard, Claude Crépeau, and Moti Yung. Everything in NP can be argued in perfect zero-
knowledge in a bounded number of rounds (extended abstract). In EUROCRYPT ’89: Proceedings of

the workshop on the theory and application of cryptographic techniques on Advances in cryptology,
pages 192–195, New York, NY, USA, 1990. Springer-Verlag New York, Inc.

[22] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concurrent zero-knowledge requires
omega∼(log n) rounds. In STOC, pages 570–579, 2001.

[23] André Chailloux, Dragos Florin Ciocan, Iordanis Kerenidis, and Salil P. Vadhan. Interactive and
noninteractive zero knowledge are equivalent in the help model. In TCC, pages 501–534, 2008.

[24] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC, pages 151–158, 1971.

[25] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience, 2 edition,

July 18, 2006.

BIBLIOGRAPHY 67

[26] Ronald Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis, CWI
and Uni.of Amsterdam, 1996.

[27] Ivan Damgård. Interactive hashing can simplify zero-knowledge protocol design without computa-
tional assumptions (extended abstract). In CRYPTO, pages 100–109, 1993.

[28] Ivan Damgård and Oded Goldreich Avi Wigderson. Hashing functions can simplify zero-knowledge
protocol design (too). Technical Report RS-94-39, BRICS, November 1994.

[29] Ivan B. Damgård. On the existence of bit commitment schemes and zero-knowledge proofs. In
CRYPTO ’89: Proceedings on Advances in cryptology, pages 17–27, New York, NY, USA, 1989.
Springer-Verlag New York, Inc.

[30] Ivan B. Damgård. On σ-protocols. Available online at www.daimi.au.dk/ ivan/Sigma.pdf, 2005.

[31] Whitfield Diffie and Martin E. Hellman. Multiuser cryptographic techniques. In AFIPS National

Computer Conference, pages 109–112, 1976.

[32] Yan Zong Ding, Danny Harnik, Alon Rosen, and Ronen Shaltiel. Constant-round oblivious transfer in
the bounded storage model. J. Cryptology, 20(2):165–202, 2007.

[33] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithm. IEEE

Transactions on Information Theory, IT-31(4):469–472, 1984.

[34] Shimon Even, Alan L. Selman, and Yacov Yacobi. The complexity of promise problems with applica-
tions to public-key cryptography. Information and Control, 61(2):159–173, May 1984.

[35] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. J. Cryptology, 1(2):77–94,
1988.

[36] Joan Feigenbaum and Lance Fortnow. Random-self-reducibility of complete sets. SIAM J. Comput.,
22(5):994–1005, 1993.

[37] Lance Fortnow. The complexity of perfect zero-knowledge. In Silvio Micali, editor, Advances in

Computing Research, volume 5, pages 327–343. JAC Press, Inc., 1989.

[38] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman, January 15, 1979.

[39] Oded Goldreich. Foundations of Cryptography, volume 1. Cambridge University Press, 2001.

[40] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof systems. SIAM J.

Comput., 25(1):169–192, 1996.

68 BIBLIOGRAPHY

[41] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity or all
languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–729, 1991.

[42] Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Honest-verifier statistical zero-knowledge equals
general statistical zero-knowledge. In STOC, pages 399–408, 1998.

[43] Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Can statistical zero knowledge be made non-
interactive? or on the relationship of SZK and NISZK. In CRYPTO, pages 467–484, 1999.

[44] Oded Goldreich and Salil P. Vadhan. Comparing entropies in statistical zero-knowledge with appli-
cations to the structure of SZK. In IEEE Conference on Computational Complexity, pages 54–73,
1999.

[45] S. Goldwasser and M. Sipser. Private-coins versus public-coins in interactive proof systems. In Silvio
Micali, editor, Advances in Computing Research, volume 5, pages 73–90. JAC Press, Inc.,1989.

[46] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof
systems. SIAM J. Comput., 18(1):186–208, 1989.

[47] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In
EUROCRYPT, pages 339–358, 2006.

[48] Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge protocol fitted to security
microprocessor minimizing both trasmission and memory. In EUROCRYPT, pages 123–128, 1988.

[49] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator
from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[50] Toshiya Itoh, Yuji Ohta, and Hiroki Shizuya. A language-dependent cryptographic primitive. J. Cryp-

tology, 10(1):37–50, 1997.

[51] Bruce Kapron, Lior Malka, and Venkatesh Srinivasan. Characterizing non-interactive instance-
dependent commitment-schemes (NIC). In 34th International Colloquium on Automata, Languages

and Programming (ICALP 2007), volume 4596 of LNCS, pages 328–339, 2007.

[52] Jonathan Katz. Which languages have 4-round zero-knowledge proofs? In TCC, pages 73–88, 2008.

[53] Joe Kilian, Erez Petrank, and Charles Rackoff. Lower bounds for zero knowledge on the internet. In
FOCS, pages 484–492, 1998.

[54] Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size proofs
unless the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501–1526, 2002.

[55] Johannes Köbler. On graph isomorphism for restricted graph classes. In CiE, pages 241–256, 2006.

BIBLIOGRAPHY 69

[56] Babai László and Shlomo Moran. Arthur-merlin games: A randomized proof system and a hierarchy
of complexity classes. J. of Computer and System Sciences, 36:254–276, 1988.

[57] Leonid A. Levin. Universal’nyı̆e perebornyı̆e zadachi (universal search problems). Problemy Peredachi

Informatsii, 9(3):265–266, 1973.

[58] Karp R. M. Reducibility among combinatorial problems. In J. W. Thatcher and R. E. Miller, editors,
Complexity of Computer Computations, pages 85–103. Plenum Press, Inc., 1972.

[59] Lior Malka. How to achieve perfect simulation and a complete problem for non-interactive perfect
zero-knowledge. In TCC, pages 89–106, 2008.

[60] Lior Malka. Instance-dependent commitment schemes and the round complexity of perfect zero-
knowledge proofs. Technical Report TR08-068, Electronic Colloquium on Computational Complexity
(ECCC), July 3, 2008.

[61] Silvio Micali and Rafael Pass. Local zero knowledge. In STOC, pages 306–315, 2006.

[62] Daniele Micciancio, Shien Jin Ong, Amit Sahai, and Salil P. Vadhan. Concurrent zero knowledge
without complexity assumptions. In TCC, pages 1–20, 2006.

[63] Daniele Micciancio and Salil P. Vadhan. Statistical zero-knowledge proofs with efficient provers:
Lattice problems and more. In CRYPTO, pages 282–298, 2003.

[64] Daniele Micciancio and Scott Yilek. The round-complexity of black-box zero-knowledge: A combi-
natorial characterization. In TCC, pages 535–552, 2008.

[65] Peter Bro Miltersen and N. V. Vinodchandran. Derandomizing arthur-merlin games using hitting sets.
Computational Complexity, 14(3):256–279, 2005.

[66] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Prob-

abilistic Analysis. Cambridge University Press, April 2005.

[67] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158, 1991.

[68] Moni Naor, Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. Perfect zero-knowledge
arguments for p using any one-way permutation. J. Cryptology, 11(2):87–108, 1998.

[69] Minh-Huyen Nguyen, Shien Jin Ong, and Salil Vadhan. Statistical zero-knowledge arguments for NP
from any one-way function. In Proceedings of the 47th Annual IEEE Symposium on Foundations of

Computer Science (FOCS 2006), pages 3–14, October 2006. Berkeley, CA.

[70] Minh-Huyen Nguyen and Salil Vadhan. Zero knowledge with efficient provers. In STOC ’06: Pro-

ceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages 287–295, New

York, NY, USA, 2006. ACM Press.

70 BIBLIOGRAPHY

[71] Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. J. Comput. Syst. Sci.,
60(1):47–108, 2000.

[72] Shien Jin Ong and Salil P. Vadhan. Zero knowledge and soundness are symmetric. In EUROCRYPT,
pages 187–209, 2007.

[73] Shien Jin Ong and Salil P. Vadhan. An equivalence between zero knowledge and commitments. In
TCC, pages 482–500, 2008.

[74] Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. Interactive hashing simplifies zero-
knowledge protocol design. In EUROCRYPT, pages 267–273, 1993.

[75] Christos H. Papadimitriou. Computational Complexity. Addison Wesley, December 10, 1993.

[76] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with logarithmic round-
complexity. In FOCS, pages 366–375, 2002.

[77] Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero-knowledge. J. ACM,
50(2):196–249, 2003.

[78] Saurabh Sanghvi and Salil P. Vadhan. The round complexity of two-party random selection. In STOC,
pages 338–347, 2005.

[79] Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung. On monotone formula
closure of SZK. In IEEE Symposium on Foundations of Computer Science, pages 454–465, 1994.

[80] Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung. Image density is
complete for non-interactive-SZK (extended abstract). In ICALP, pages 784–795, 1998.

[81] Claus-Peter Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4(3):161–174, 1991.

[82] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[83] Michael Sipser. A complexity theoretic approach to randomness. In STOC, pages 330–335, 1983.

[84] Martin Tompa and Heather Woll. Random self-reducibility and zero-knowledge interactive proofs of
possession of information. In 28th FOCS, pages 472–482, 1987.

[85] Jacobo Torán. On the hardness of graph isomorphism. SIAM J. Comput., 33(5):1093–1108, 2004.

[86] Salil P. Vadhan. A study of statistical zero-knowledge proofs. PhD thesis, MIT, 1999.

[87] Salil P. Vadhan. An unconditional study of computational zero knowledge. SIAM J. Comput.,
36(4):1160–1214, 2006.

[88] John Watrous. Zero-knowledge against quantum attacks. In STOC, pages 296–305, 2006.

