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Abstract. We provide a new characterization of certain zero-knowledge proto-
cols asnon-interactive instance-dependent commitment-schemes(NIC). To ob-
tain this result we consider the notion of V-bit protocols, which are very com-
mon, and found many applications in zero-knowledge. Our characterization re-
sult states that a protocol has a V-bit zero-knowledge protocol if and only if it has
a NIC. TheNIC inherits its hiding property from the zero-knowledge property
of the protocol, and vice versa.

Our characterization result yields a framework that strengthens and simplifies
many zero-knowledge protocols in various settings. For example, applying this
framework to the result of Micciancio et al. [19] (who showed that some prob-
lems, including GRAPH-NONISOMORPHISMand QUADRATIC-RESIDUOUSITY,
unconditionallyhave a concurrent zero-knowledge proof) we easily get that arbi-
trary, monotone boolean formulae over a large class of problems (which contains,
e.g., the complement of any random self-reducible problem)unconditionallyhave
a concurrent zero-knowledge proof.
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1 Introduction

Zero-knowledge protocols are two party protocols that enable one party (the prover) to
convince another party (the verifier) of an assertion, with the guarantee that the verifier
learns nothing but the truth of the assertion [15]. These protocols play a central role in
the theory of cryptography, and they are also interesting from a complexity theoretic
perspective because they facilitate the study ofNP through interaction and randomness.

Zero-knowledge protocols and cryptography heavily rely on commitment-schemes.
For example, every language inNP has a computational zero-knowledge (CZK ) proto-
col [14, 5] if bit commitment-schemes (equivalently, one-way functions [16, 21]) exit.
Consequently, many results about zero-knowledge protocols, and cryptography in gen-
eral, are based on unproven assumptions.

Recently, Vadhan [28] gave a characterization ofCZK , called the SZK/OWF-
CHARACTERIZATION, which leads to the construction of a special scheme from any



zero-knowledge protocol. Utilizing this scheme and the techniques already known from
the conditional study of zero-knowledge, Vadhan was able to prove many results about
CZK without relying on any unproven assumptions. A similar approach was applied
by Nguyen and Vadhan [22] in the context of zero-knowledge proofs with efficient
provers1, and by Ong and Vadhan [23] in the context of zero-knowledge arguments.
The works of [28, 22, 23] demonstrate that we can prove unconditional results about
zero-knowledge protocols. This can be done by characterizing zero-knowledge proto-
cols as special bit commitment-schemes, and then using these special schemes instead
of bit commitment-schemes2.

We continue this line of research. That is, we construct special schemes from a spe-
cific class of zero-knowledge protocols, and then we use the special schemes instead
of bit commitment-schemes. Our schemes are simply functions. That is, by restrict-
ing ourselves to a specific class of zero-knowledge protocols we are able to construct
very simple non-interactive schemes. In contrast, the schemes of Vadhan [28] can be
constructed fromanyzero-knowledge protocol, but they are interactive, and have an in-
volved definition (similar in flavor to that of zero-knowledge protocols). We stress that
although our schemes are constructed from specific zero-knowledge protocols, they can
be used in other zero-knowledge protocols, and in various settings. That is, our charac-
terization result yields a framework with wide applicability.

Our Results. We provide a new characterization of certain zero-knowledge protocols
as special bit commitment-schemes. To obtain this result we consider the notion of V-
bit protocols. Informally, in such protocols the prover sends the first messagem1, the
verifier sends back a random bitb, the prover replies with a messagem2, and the verifier
accepts or rejects. These protocols are very common in zero-knowledge. Examples in-
clude the perfect zero-knowledge (PZK ) proof of [4] for GRAPH-ISOMORPHISM, the
statistical zero-knowledge (SZK) proof of [20] for certain lattice problems, theSZK
andPZK proofs of [25] for variants of STATISTICAL -DISTANCE (SD), and more.

We construct an efficient functionf(x, b; r) from any V-bit zero-knowledge proto-
col for a promise-problemΠ def= 〈ΠY,ΠN〉. The inputs tof are a stringx, a bit b, and
randomnessr. The outputy of f hidesb whenx is aYESinstance, and binds tob when
x is aNOinstance. More precisely, giveny = f(x, b; r), if x ∈ ΠY, thenb cannot be
determined fromy, and ifx ∈ ΠN, theny can be a commitment to either0 or 1, but not
both (i.e.,y 6= f(x, 1−b; r′) for all r′). Notice that unlike bit commitment-schemes, the
hiding and the binding properties off may not hold simultaneously. Sincef is a non-
interactive commitment-scheme forΠ, we callf a non-interactive instance-dependent
commitment-scheme(NIC). Using the techniques of [10, 17] we get the following:

Main result (informal). A problemΠ has a V-bit zero-knowledge protocol if and only
if Π has aNIC.

The NIC f inherits its hiding property from the zero-knowledge property of the
V-bit protocol, and vice versa. For example, theSZK protocols for the lattice problems

1 A prover isefficientif given witness for inputx it runs in time polynomial in|x|.
2 The idea of replacing a bit commitment-scheme with a special scheme is due to Itoh et al. [17].

However, [17] construct a special scheme (different from that of [28, 22]) for specific lan-
guages, whereas [28, 22] provide a characterization result.



of Micciancio and Vadhan [20] yield a statistically hidingNIC for these problems, and
vice versa.

The notion of V-bit protocols is related to Cramer’s notion ofΣ-protocols [7]. These
protocols are similar to V-bit protocols in that they are also3-round public-coin proto-
cols, but instead of sending a bitb, the verifier sends a stringe. However, if we consider
V-bit zero-knowledgeprotocols, then the two notions are equivalent (the idea is to let
e be the bitb, followed by zeroes [11]). Thus, our characterization result applies to
Σ-protocols as well.

An immediate corollary to the characterization result is a transformation from V-
bit honest-verifierzero-knowledge protocols todishonest-verifierV-bit zero-knowledge
protocols withefficient provers. The transformation preserves the zero-knowledge prop-
erty of the original protocol. When we apply it to, .e.g., the protocol of [25] for variants
of SD we immediately get a zero-knowledge protocol with an efficient prover for these
variants, a result previously proved in [20] using similar ideas.

To show that our characterization result yields a useful framework we prove that
NIC can be combined in a monotone boolean formula fashion (i.e., withANDandOR
connectors). For example, iff is aNIC for GRAPH-ISOMORPHISM, andg is aNIC for
the lattice problems of [20], then our lemma states that, e.g.,f ∧ g andf ∨ g are also
NIC for the corresponding problems.

Second result (informal). The class of problems possessingNIC is closed under arbi-
trary monotone boolean formulae.

In addition, we prove that any random self-reducible (RSR) problem [2] has a per-
fectly hidingNIC. This folklore lemma follows from [27, 26], but here we provide the
proof for completeness. Let us see how combining these lemmas with our characteriza-
tion result yields a very useful framework.

Removing computational assumptions.Our framework allows replacing the bit
commitment-scheme in the protocol of Barak [3] with aNIC. The protocol inherits its
zero-knowledge property from the hiding property of theNIC. For example, we get that
if a problem has a perfectly hidingNIC, then it has a public-coin, round-efficient proto-
col (i.e., constant-round, with a negligible soundness error, and perfect completeness).
The protocol is aPZK argument with a strict, polynomial-timenon-black-boxsimula-
tor. Notice that our protocol applies to problems that have aNIC, whereas the protocol
of [3] applies to all ofNP. As in [3], our protocol assumes the existence of collision-
resistent hash functions. However, our result yieldsPZK protocols (as opposed toCZK
in [3]), and it does not use bit commitment-schemes.

Abstraction and closure. Our framework strengthens and simplifies the result of
Micciancio, Ong, Sahai, and Vadhan [19], who showed that aNIC with reversed proper-
ties3 can replace the bit commitment-scheme in the protocol of [24]. Unlike [19], since
we already have a characterization result, we do not need to construct such aNIC for
specific problems (e.g., GRAPH-NONISOMORPHISM) or to be familiar with their defin-
ition (e.g., the lattice problems of [20]). Also, our framework shows that suchNIC are
closed under monotone boolean formulae. Thus, when we apply our framework to the

3 By ”reversed” we mean that the hiding property holds onNOinstances of the problem (instead
of YESinstances), and the binding property holds onYESinstances (instead ofNOinstances).



theorem of [19] we get that arbitrary, monotone boolean formulae over a large class of
problems (which contains, e.g., the complement of any random self-reducible problem)
unconditionallyhave a concurrent zero-knowledge proof. Similar improvements apply
to local zero-knowledge [18], and quantum zero-knowledge [29].

Unifying previous works. Our framework unifies under the theme ofNIC the
results of Tompa and Woll [27], De Santis, Di Crescenzo, Persiano, and Yung [26], and
Itoh, Ohta, and Shizuya [17]. Actually, these works only consider the perfect setting,
and focus mainly onRSR problems. In contrast, our framework includes problems that
are not known to beRSR, and it also considers the statistical and the computational
setting. Hence, we get stronger and more general results under one simple theme.

Related work. We use the idea of Damgård [10] to obtain aNIC from any V-bit
zero-knowledge protocol. Feige and Shamir used a similar idea to construct a trapdoor
commitment-scheme from a bit commitment-scheme. Notice that the context of the
work of Damg̊ard [10] was to investigate whether zero-knowledge imply bit commitment-
schemes. That is, [10] constructed an interactive bit commitment-scheme (as opposed
to a non-interactive,instance-dependentcommitment-scheme) from a proof of knowl-
edge for anyNP-hard relation, provided that the proof is aΣ-protocol. In contrast, we
construct aNIC from any V-bit zero-knowledge protocol, regardless of whether the
underlying problem isNP-hard. Also, the binding property of ourNIC follows from
the soundness of the underlying V-bit protocol, whereas in [10] the binding property is
computational, and follows from the hardness of the underlying problem.

Our lemma on the closure ofNIC under monotone boolean formulae uses the ideas
of [26]. These ideas were also used in [25, 28] to show closure properties. Our lemma
is related to the closure results of Damgård and Cramer [9], and Cramer, Damgård, and
Mackenzie [8]. All these results are proved by modifying the original protocols to obtain
the closure. In contrast, we prove our closure result in a simple combinatorial setting
(usingNIC), and we always use the same underlying protocol of Blum [5] forNP. In
addition, the results of [9, 8] change the properties of the original protocol. For example,
in [9] the protocol becomes a private-coin protocol, and in [8] the protocol becomes a
4-round protocol. In contrast, since we work withNIC, our underlying protocol does
not change.

Our NIC is related to versions ofSD, a complete problem forSZK [25]. That
is, a problem has a perfectly (respectively, statistically) hidingNIC if and only if it

Karp-reduces toSD1,0 (respectively,SD1,1/2). The notion of a perfectly hidingNIC
is implicit in [4], and formalized in [17]. The notion of a statistically hidingNIC was
formalized by [20]. Here we provide the computational analogue.

2 Non-interactive, Instance-Dependent Commitment-Schemes

We define non-interactive, instance-dependent commitment-schemes (NIC). Using the
technique of [17] we show that if a problem has aNIC, then it has a V-bit zero-
knowledge protocol (this holds for computationally hidingNIC if, in addition, the
problem is inNP). The protocol is also a proof of knowledge, and it inherits its zero-
knowledge property from the hiding property of theNIC.



Intuitively, abit commitment-schemeallows a sender to commit to a bitb such that
the receiver cannot learn the value ofb, yet the sender cannot changeb. Informally,
a NIC is a bit commitment-scheme in which the hiding and the binding properties
depend on a stringx, and thus may not hold simultaneously. That is, instead off(b; r)
we considerf(x, b; r), and the hiding and binding properties depend on whetherx is a
YESon aNOinstance of some problemΠ. Formally,

Definition 2.1 (NIC). Let Π = 〈ΠY,ΠN〉 be a promise-problem, and letf(x, b; r) be
a probabilistic, polynomial-time Turing machine on inputsx andb ∈ {0, 1}. The string
r denotes the randomness off .

We say thatf is binding on ΠN if for any x ∈ ΠN, and for anyr and r′ it holds
that f(x, 0; r) 6= f(x, 1; r′). We say thatf is perfectly(respectively,statistically, com-
putationally) hiding on ΠY if for any x ∈ ΠY and eachb ∈ {0, 1} the ensembles
{f(x, 0)}x∈ΠY and{f(x, 1)}x∈ΠY are statistically identical (respectively, statistically
indistinguishable, computationally indistinguishable).

We say thatf is aperfectly(respectively,statistically, computationally) hidingNIC
for Π if f is binding onΠN, and perfectly (respectively, statistically, computationally)
hiding onΠY.

When appropriate we will omit the random inputr tof . Notice that iff is a perfectly
or a statistically hidingNIC for Π, then as a class of problemsNP containsΠ. This is
so because ifx ∈ ΠY, then there is a pair〈r, r′〉 such thatf(x, 0; r) = f(x, 1; r), and if
x ∈ ΠN, then no such pair exists. However,Π may not be inNP if f is computationally
hiding . We give an example of a perfectly hidingNIC.

Example 2.1.NIC for the language GRAPH-ISOMORPHISM [4, 17]. Let f(x, b; r) be
a function that given a pair of graphsx = 〈G0, G1〉 on n vertices usesr to define
a random permutationπ over {1, . . . , n}, and outputsy = π(Gb). If the graphs are
isomorphic, theny is isomorphic to bothG0 andG1, andb cannot be determined from
y. Conversely, if the graphs are not isomorphic, theny cannot be isomorphic to bothG0

andG1. Thus,f is a perfectly hidingNIC for GRAPH-ISOMORPHISM.

Our protocol follows the idea of [17], which uses the protocol of Blum [5] for the
NP-complete problem HAMILTONIAN -CIRUIT (HC). In the protocol of [17] the prover
and the verifier initially reduce the inputx of the problem possessing aNIC to an
instanceG of HC, and then execute the zero-knowledge protocol of [5] using theNIC
as a bit commitment-scheme. Notice that the prover can transform its witness forx into
a witness forG, and thus it is efficient. Whenx ∈ ΠY the scheme is hiding, and thus the
protocol is zero-knowledge. Whenx ∈ ΠN the scheme is binding, and thus the protocol
is sound. Our lemma follows. The proof is very similar to that of [17].

Lemma 2.1. If a problemΠ has a perfectly (respectively, statistically) hidingNIC,
thenΠ has a public-coinPZK (respectively,SZK) proof with an efficient prover. If
Π ∈ NP, and Π has a computationally hidingNIC, thenΠ has a public-coinCZK
proof with an efficient prover.

Itoh, Ohta, and Shizuya [17] observed that ifΠ has a statistically hidingNIC, then
Π cannot beNP-complete, unless the polynomial hierarchy collapses [12, 1, 6]. In the



next section we show that V-bit zero-knowledge protocols andNIC are equivalent.
Thus,NP-complete languages cannot have V-bitSZK proofs, unless the polynomial
hierarchy collapses.

3 Characterizing V-bit Zero-Knowledge Protocols

We introduce the notion of V-bit protocols, and then show how to construct aNIC
from a simulator of any V-bit zero-knowledge protocol. Since the zero-knowledge pro-
tocols constructed in Section 2 for problems possessingNIC are V-bit zero-knowledge
protocols, we get our main theorem.

Theorem 3.1. A promise-problemΠ has aV-bit PZK (respectively,SZK) proof if and
only if Π has a perfectly (respectively, statistically) hidingNIC. Similarly, Π has a
V-bit CZK proof if and only if Π ∈ NP andΠ has a computationally hidingNIC.

We present the definition of V-bit protocols.

Definition 3.1 (V-bit protocol). LetΠ = 〈ΠY,ΠN〉 be a problem, and let〈P, V 〉 be a
protocol forΠ with perfect completeness. We say that〈P, V 〉 is V-bit if for anyx ∈ ΠY

the interaction betweenP andV is as follows:P sendsm1 to V , andV replies with a
uniformly chosen bitb. P replies by sendingm2 to V , andV accepts or rejectsx based
on 〈x,m1, b,m2〉.

Using the idea of [10] we show how to construct aNIC from a simulatorS for
any V-bit zero-knowledge protocol〈P, V 〉. TheNIC will be hiding onYES instances,
and binding onNOinstances. We start with the following idea to commit to a bitb:
use randomnessr to executeS on inputx, obtain a transcript〈m1, b

′,m2〉 such that
b = b′ andV accepts, and outputm1 as a commitment. Ifx is a YES instance, then
the perfect completeness property guarantees that we always obtain transcripts where
V accepts, and sinceb cannot be determined from suchm1, the commitment is hid-
ing. Conversely, by the soundness of〈P, V 〉, if x is a NOinstance, then there are no
transcripts〈m1, 0,m2〉 and〈m1, 1,m′

2〉 such thatV accepts in both. The problem with
this idea is thatb′ may not be equal tob. To overcome this issue we redefine the com-
mitment to be〈m1, b

′ ⊕ b〉. That is, we executeS(x), obtain〈m1, b
′,m2〉, and output

〈m1, b
′⊕b〉. Intuitively, sinceb′ is hidden, the bitb′⊕b is also hidden. Thus, the scheme

is hiding. Our lemma follows.

Lemma 3.1. Let Π = 〈ΠY,ΠN〉 be a promise-problem. IfΠ has aV-bit, public-coin
HVPZK (respectively,HVSZK , HVCZK ) proof, thenΠ has aNIC that is perfectly
(respectively, statistically, computationally) hiding onΠY and perfectly binding onΠN.

Proof. Fix a public-coin, V-bitHVPZK (respectively,HVSZK , HVCZK ) proof〈P, V 〉
for Π, and fix a simulatorS for 〈P, V 〉. Without loss of generality we can assume thatS
either outputs transcripts in whichV accepts, or it outputsfail . UsingS we define a
NIC f for Π as follows. Letf(x, b; r) be the function that executesS(x) with random-
nessr. If f obtains a transcript〈x,m′

1, b
′,m′

2〉 such thatV (x,m′
1, b

′,m′
2) = accept ,

thenf outputs〈m′
1, b

′ ⊕ b〉. Otherwise,f outputsb.



We show thatf is binding onΠN. Let x ∈ ΠN. Notice that for anyr and b it
holds thatf(x, b; r) outputs one bit if and only iff(x, b; r) = b. Thus, if f outputs
one bit, then there are nor and r′ such thatf(x, 0; r) = f(x, 1; r′). For the case
wheref(x, b; r) outputs a pair〈m̃1, b̃〉, recall that̃b = b′ ⊕ b, whereb′ is taken from
some transcript〈x,m′

1, b
′,m′

2〉. Thus, by the definition off , for anym̃1, b̃, r andr′ it
holds thatf(x, 0; r) = f(x, 1; r′) = 〈m̃1, b̃〉 if and only if there arem2 andm′

2 and
such thatV (x,m1, 0,m2) = V (x, m1, 1,m′

2) = accept . However,〈P, V 〉 is public
coin, and by the soundness property of〈P, V 〉 there are nom1,m2 andm′

2 such that
V (x, m1, 0,m2) = V (x, m1, 1,m′

2) = accept . Hence, iff does not output one bit,
then there are nor and r′ such thatf(x, 0; r) = f(x, 1; r′). We conclude thatf is
perfectly binding onΠN.

The rest of the proof shows thatf is hiding onΠY. Starting with the statistical set-
ting, we calculate the statistical distance between commitments to0 and commitments
to 1 overx ∈ ΠY. The following probabilities are over the randomnessr for f .

∆(f(x, 0), f(x, 1)) =
1
2

∑
α

|Pr[f(x, 0) = α]− Pr[f(x, 1) = α]|

=
1
2

∑
m1

|Pr[f(x, 0) = 〈m1, 0〉]− Pr[f(x, 1) = 〈m1, 0〉]|+

1
2

∑
m1

|Pr[f(x, 0) = 〈m1, 1〉]− Pr[f(x, 1) = 〈m1, 1〉]|+

1
2

∑
b

|Pr[f(x, 0) = b]− Pr[f(x, 1) = b]| .

For anyx we definepx
def= Pr[S(x) = fail ], where the probability is over the random-

ness toS. In addition, whenS is aHVPZK simulator we are assuming thatpx = 0. By
the definition off , the above sum overb equalspx. It remains to deal with the sums over
m1. We show that the first sum is upper bounded by∆(〈P, V 〉(x), S(x)) − px/2, and
since a symmetric argument applies to the second sum, the total will be upper bounded
by 2 ·∆(〈P, V 〉(x), S(x)). The following probabilities for〈P, V 〉(x) andS(x) are over
the randomness toP, V andS, respectively.

1
2

∑
m1

|Pr[f(x, 0) = 〈m1, 0〉]− Pr[f(x, 1) = 〈m1, 0〉]| =
1
2

∑
m1

|
∑
m2

Pr[S(x) = 〈m1, 0,m2〉]−
∑
m2

Pr[S(x) = 〈m1, 1,m2〉]| =

1
2

∑
m1

|
∑
m2

Pr[S(x) = 〈m1, 0,m2〉]−
∑
m2

Pr[〈P, V 〉(x) = 〈m1, 0,m2〉]

−(
∑
m2

Pr[S(x) = 〈m1, 1,m2〉]−
∑
m2

Pr[〈P, V 〉(x) = 〈m1, 1,m2〉])| ≤

1
2

∑
m1,m2

(|Pr[S(x) = 〈m1, 0,m2〉]− Pr[〈P, V 〉(x) = 〈m1, 0,m2〉]|+
|Pr[S(x) = 〈m1, 1,m2〉]− Pr[〈P, V 〉(x) = 〈m1, 1,m2〉]|) =
∆(〈P, V 〉(x), S(x))− px/2 .



Above we used the fact thatS outputs transcripts in whichV accepts, and then we
used the fact that〈P, V 〉 is public-coin (which implies that for anym1 the proba-
bility to choose an element of〈P, V 〉(x) whose prefix is〈m1, 0〉 equals the proba-
bility to choose an element of〈P, V 〉(x) whose prefix is〈m1, 1〉). We conclude that
∆(f(x, 0), f(x, 1)) ≤ 2 ·∆(S(x), 〈P, V 〉(x)). Hence, ifS is aHVPZK (respectively,
HVSZK ) simulator, then∆(S(x), 〈P, V 〉(x)) is 0 for anyx ∈ ΠY (respectively, neg-
ligible on ΠY), which implies thatf is perfectly (respectively, statistically) hiding on
ΠY.

It remains to deal with the case thatS is a HVCZK simulator. The analysis is
analogues to the statistical setting, but in reverse. We define the functionf ′(·, b) just like
f , except that instead of executing the simulator,f ′ receives a transcript〈m1, b

′,m2〉
and outputs〈m1, b

′ ⊕ b〉. Thus,f ′(S(x), b) andf(x, b) are identically distributed for
anyb ∈ {0, 1}. Assume towards contradiction that there is a probabilistic, polynomial-
time Turing machineD that distinguishes{f(x, 0)}x∈ΠY and{f(x, 1)}x∈ΠY . Thus,D
distinguishes{f ′(S(x), 0)}x∈ΠY and{f ′(S(x), 1)}x∈ΠY , and the following expression
is non-negligible:

|Pr[D(f ′(S(x), 0)) = 1]− Pr[D(f ′(S(x), 1)) = 1]| ≤
|Pr[D(f ′(S(x), 0)) = 1]− Pr[D(f ′(〈P, V 〉(x), 0)) = 1]|+
|Pr[D(f ′(S(x), 1)) = 1]− Pr[D(f ′(〈P, V 〉(x), 1)) = 1]| .

Above we used the fact that〈P, V 〉 is V-bit, which implies thatf ′(〈P, V 〉(x), 0) and
f ′(〈P, V 〉(x), 1) are identically distributed for anyx ∈ ΠY. It follows that there is
b ∈ {0, 1} such thatD distinguishes{f ′(〈P, V 〉, b)}x∈ΠY and {f ′(S(x), b)}x∈ΠY .
Sincef ′ is efficient, this contradicts the fact thatS is aHVCZK simulator. We conclude
thatf is computationally hiding onΠY. The lemma follows.

Theorem 3.1 presented in the beginning of this section immediately follows from
Lemmas 2.1 and 3.1. Thus, we get a characterization of V-bit zero-knowledge protocols
asNIC. We remark that Theorem 3.1 can be extended to arguments, and to relaxed
notions ofV -bit protocols.

4 Random Self-Reducibility ImpliesNIC

We prove the folklore theorem that if a problemΠ is random self-reducible, thenΠ
has a perfectly hidingNIC. Our proof uses the idea behind the construction of the
subroutine in the protocol of [26] (see Section3.3 in [26]). Combining this theorem
with our closure result from the next section allows us to strengthen and unify the
results of [27, 26, 17], and achieve all the improvements claimed in the introduction.
We define random self-reducibility.

Definition 4.1 (Random self-reducible language [2]).LetN ⊂ {0, 1}∗ be a count-
able set such thatRx is anNP-relation for eachx ∈ N . Thedomainof Rx is denoted
d(Rx) def= {z|∃w 〈z, w〉 ∈ Rx}. The languageL def= {〈x, z〉|x ∈ N ,∃w 〈z, w〉 ∈ Rx} is
random self-reducible (RSR)if there are polynomial time algorithmsG, A1, A2, andS
such thatS(x, z; r) = y ∈ d(Rx) for anyx ∈ N , z, andr, and the following conditions
hold.



1. If z ∈ d(Rx), and r is uniformly distributed, theny is uniformly distributed in
d(Rx).

2. A witness fory yields a witness forz, and vice versa. That is,〈z,A1(x, y, r, w′)〉 ∈
Rx for any〈y, w′〉 ∈ Rx, and〈y, A2(x, z, r, w′′)〉 ∈ Rx for any〈z, w′′〉 ∈ Rx.

3. G(x; r) = 〈z′, w′〉 ∈ Rx, and if r is uniformly distributed, thenz′ is uniformly
distributed ind(Rx), andw′ is uniformly distributed in{w|〈z, w〉 ∈ Rx}.

We prove that random self-reducible problems have a perfectly hidingNIC. Given
N andRx as in Definition 4.1 we define the problemΠL def= 〈ΠL

Y,ΠL
N〉, whereΠL

Y
def=

{〈x, z〉|x ∈ N ,∃w 〈z, w〉 ∈ Rx}, andΠL
N

def= {〈x, z〉|x ∈ N ,∀w 〈z, w〉 /∈ Rx}.

Lemma 4.1. If L is a random self-reducible language, thenΠL has a perfectly hiding
NIC.

Proof. Let L def= {〈x, z〉|x ∈ N ,∃w 〈z, w〉 ∈ Rx} be a random self-reducible language.
Consider the algorithmsS andG from Definition 4.1. LetG′(x; r) be the algorithm that
executesG(x; r), obtains〈z′, w′〉, and outputsz′. We useS andG′ to commit to0 and
1, respectively. Formally, we define ourNIC to be the probabilistic, polynomial-time
Turing machinef(x, z, b; r) that on input〈x, z〉 ∈ ΠL

Y ∪ΠL
N, bit b, and randomnessr

outputsS(x, z; r) if b = 0, andG′(x; r) if b = 1.
The efficiency off follows from the efficiency ofS andG. We show thatf is per-

fectly hiding. By Definition 4.1,S(x, z; r) = y is uniformly distributed overd(Rx) if
r is uniformly distributed, and〈x, z〉 ∈ ΠL

Y. Similarly, G(x; r) = 〈z′, w′〉, andz′ is
uniformly distributed overd(Rx) if r is uniformly distributed andx ∈ N . Since the
output off is uniformly distributed overd(Rx) for anyb and〈x, z〉 ∈ ΠL

Y, the ensem-
bles{f(x, z, 0; r)}〈x,z〉∈ΠL

Y
and{f(x, z, 1; r)}〈x,z〉∈ΠL

Y
are statistically identical, and

thereforef is perfectly hiding onΠL
Y.

We show thatf is binding onΠL
N. Let 〈x, z〉 ∈ ΠL

N. Assume towards contradic-
tion that there arer and r′ such thatS(x, z; r) = f(x, z, 0; r) = f(x, z, 1; r′) =
G′(x; r). Let y = S(x, z; r). By the definition ofG′, there isw′ such thatG(x; r) =
〈G′(x; r), w′〉 = 〈y, w′〉 ∈ Rx. By the property ofA1 from Definition 4.1, it follows
that 〈z,A1(x, y, r, w′)〉 ∈ Rx. Hence,〈x, z〉 ∈ ΠL

Y, in contradiction to the choice of
〈x, z〉 ∈ ΠL

N. Thus,f is binding onΠL
N.

Notice that in the above proof we did not use AlgorithmA2 from Definition 4.1.
Neither did we use the fact thatA1 runs in polynomial time, nor did we use the witness
outputted byG.

5 Closure of Problems PossessingNIC under Monotone Boolean
Formulae

We use the technique of [26] to show that the class of problems possessingNIC is
closed underarbitrary (as opposed to fixed) monotone boolean formulae. For perfectly
hidingNIC the analysis is simple, but for statistically and computationally hidingNIC
the analysis is more complicated.



Motivation. Let f be a perfectly hidingNIC for a problemΠ. Consider a prover and
a verifier who are given instancesx0, . . . , xn ∈ ΠY ∪ ΠN, and suppose that the prover
wants to prove to the verifier that more than half of thexi’s are inΠY. This statement
can be expressed using the logical connectorsAND(denoted∧) andOR(denoted∨). The
prover can prove this statement if we can construct aNIC f ′ that is hiding when more
than half of thexi are inΠY, and binding otherwise. This is so because the statement is
anNP statement, and the prover can usef ′ in the protocol of Blum [5] (as in Section 2).
Later we will give a general construction that yields suchf ′. For now we consider the
simple case wheren = 2. That is, the prover proves that bothx0 andx1 are inΠY.

To formulate the fact that the statement being proved isx0 ∈ ΠY ∧ x1 ∈ ΠY

we define the common input as〈φ, x0, x1〉, whereφ = a ∧ b. Recall that we want
to use theNIC f for Π to construct aNIC f ′ which is hiding whenx0 ∈ ΠY ∧
x1 ∈ ΠY, and binding otherwise. We can construct suchf by definingf ′(x0, x1, b)

def=
〈f(x0, b), f(x1, b)〉. Thus, ifx0, x1 ∈ ΠY, then bothf(x0, b) andf(x1, b) hideb, which
implies thatf ′ is hiding, and ifxi ∈ ΠN (for somei ∈ {0, 1}), thenf(xi, b) binds tob,
andf ′ is binding. Notice that we omitted the randomness off ′ from the notation, but
the intention is thatf ′ uses independent randomness in each execution off .

We can formulate other statements too. For example, consider a prover and a verifier
who are givenx0, x1, and the prover wants to prove that eitherx0 ∈ ΠY or x1 ∈ ΠY.
Again, we can formulate this statement by defining〈φ, x0, x1〉 as the input, whereφ =
a ∨ b. Recall that we want to use theNIC f for Π to construct aNIC f ′ which is
hiding whenx0 ∈ ΠY ∨ x1 ∈ ΠY, and hiding otherwise. We can construct suchf by
definingf ′(x0, x1, b)

def= 〈f(x0, b0), f(x1, b1)〉, whereb0 is uniformly chosen, andb1 is
chosen such thatb0 ⊕ b1 = b. Thus, ifx0, x1 ∈ ΠN, then bothf(x0, b) andf(x1, b)
bind tob, which implies thatf ′ is binding, and ifxi ∈ ΠY (for somei ∈ {0, 1}), then
f(xi, b) hidesbi, and thusf hidesb. Based on these∧ and∨ cases we can give a general
construction of aNIC f ′ from aNIC f .

Construction 5.1. Let f be aNIC, and letb ∈ {0, 1}. Let φ be a monotone boolean
formula over the variablesa1, . . . , am, and let~x = 〈x1, . . . , xn〉 be a vector ofn
strings, wheren ≥ m. Letr ∈ {0, 1}∗ be a uniformly distributed input tof ′.

The recursive functionf ′(φ, ~x, f, b; r) is defined as follows.

1. If φ = ai for some1 ≤ i ≤ m, then returnf(xi, b, r).
2. Otherwise, there are monotone boolean formulaeφ0 andφ1 such thatφ = φ0 ∧φ1

or φ = φ0 ∨ φ1. Partition r into r0 andr1.
3. If φ = φ0 ∧ φ1, then return〈f ′(φ0, ~x, f, b, r0), f ′(φ1, ~x, f, b, r1)〉.
4. If φ = φ0 ∨ φ1, then return〈f ′(φ0, ~x, f, b0, r0), f ′(φ1, ~x, f, b1, r1)〉, whereb0 ∈

{0, 1} is uniformly distributed, andb1 is chosen such thatb0 ⊕ b1 = b.

Our next step is define a problem that allows the prover to provearbitrary (as op-
posed to fixed) monotone, boolean formula statements. We need the following defin-
itions. A boolean variableis a variable that can only take the values0 or 1. We say
that φ is a monotone boolean formula ifφ is a boolean variable, orφ is φ0 ∧ φ1 or
φ0 ∨ φ1, where bothφ0 andφ1 are monotone boolean formulae. LetΠ = 〈ΠY,ΠN〉
be a promise-problem, and letx ∈ ΠY ∪ ΠN. Thecharacteristic functionχΠ of Π is
defined as follows: ifx ∈ ΠY, thenχΠ(x) = 1, and ifx ∈ ΠN, thenχΠ(x) = 0. Let φ



be a boolean formula overa1, . . . , am, and letx1, . . . , xn ∈ ΠY∪ΠN for somen ≥ m.
Theevaluationof φ in ~x = 〈x1, . . . , xn〉 is denotedφ(~x), and equals1 if and only if φ
is satisfied whenai is assignedχΠ(xi) for each1 ≤ i ≤ m.

We say that a classC of problems is closed underarbitrary, monotone boolean
formulae ifΠ ∈ C implies thatΦ(Π) ∈ C, whereΦ(Π) is defined as follows.

Definition 5.1. LetΠ = 〈ΠY,ΠN〉 be a problem. The problemΦ(Π) def= 〈Φ(Π)Y,Φ(Π)N〉
is defined as

Φ(Π)Y
def= {〈φ, x1, . . . , xn〉|φ(χΠ(x1), . . . , χΠ(xn)) = 1}

Φ(Π)N
def= {〈φ, x1, . . . , xn〉|φ(χΠ(x1), . . . , χΠ(xn)) = 0},

whereφ is a monotone boolean formula overa1, . . . , am such thatm ≤ n, andxi ∈
ΠY ∪ ΠN for all 1 ≤ i ≤ n. We defineΦ(Π)k def= 〈Φ(Π)kY,Φ(Π)N〉, whereΦ(Π)kY is
defined as

Φ(Π)kY
def= {〈φ, x1, . . . , xn〉|φ(χΠ(x1), . . . , χΠ(xn)) = 1 ∧ ∀i |xi|k ≥ |φ, x1, . . . , xn|}.

The definition ofΦ(Π) allows the prover to provearbitrary (as opposed to fixed)
monotone, boolean formula statements, and so does the definition ofΦ(Π)k. This for-
mulation has the advantage that the formula does not have to be hardwired into the
protocol, or known in advance. Our theorem follows.

Theorem 5.2. Let Π = 〈ΠY,ΠN〉 be a promise-problem with aNIC f , and letf ′ be
the function constructed fromf , given in Construction 5.1. Letk ∈ N.

1. If f is a perfectly hidingNIC for Π, thenf ′ is a perfectly hidingNIC for Φ(Π).
2. If f is a statistically (respectively, computationally) hidingNIC for Π, thenf ′ is a

statistically (respectively, computationally) hidingNIC for Φ(Π)k.
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