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Abstract. We provide a new characterization of certain zero-knowledge proto-
cols asnon-interactive instance-dependent commitment-schéNigs). To ob-

tain this result we consider the notion of V-bit protocols, which are very com-
mon, and found many applications in zero-knowledge. Our characterization re-
sult states that a protocol has a V-bit zero-knowledge protocol if and only if it has
aNIC. TheNIC inherits its hiding property from the zero-knowledge property
of the protocol, and vice versa.

Our characterization result yields a framework that strengthens and simplifies
many zero-knowledge protocols in various settings. For example, applying this
framework to the result of Micciancio et al. [19] (who showed that some prob-
lems, including @APH-NONISOMORPHISMand QUADRATIC-RESIDUOUSITY,
unconditionallyhave a concurrent zero-knowledge proof) we easily get that arbi-
trary, monotone boolean formulae over a large class of problems (which contains,
e.g., the complement of any random self-reducible problempnditionallyhave

a concurrent zero-knowledge proof.
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1 Introduction

Zero-knowledge protocols are two party protocols that enable one party (the prover) to
convince another party (the verifier) of an assertion, with the guarantee that the verifier
learns nothing but the truth of the assertion [15]. These protocols play a central role in
the theory of cryptography, and they are also interesting from a complexity theoretic
perspective because they facilitate the studyBfthrough interaction and randomness.
Zero-knowledge protocols and cryptography heavily rely on commitment-schemes.
For example, every languageNP has a computational zero-knowled@&ZK ) proto-
col [14, 5] if bit commitment-schemes (equivalently, one-way functions [16, 21]) exit.
Consequently, many results about zero-knowledge protocols, and cryptography in gen-
eral, are based on unproven assumptions.
Recently, Vadhan [28] gave a characterizationGZK , called the SZK/OWF-
CHARACTERIZATION, which leads to the construction of a special scheme from any



zero-knowledge protocol. Utilizing this scheme and the techniques already known from
the conditional study of zero-knowledge, Vadhan was able to prove many results about
CZK without relying on any unproven assumptions. A similar approach was applied
by Nguyen and Vadhan [22] in the context of zero-knowledge proofs with efficient
proverd, and by Ong and Vadhan [23] in the context of zero-knowledge arguments.
The works of [28, 22, 23] demonstrate that we can prove unconditional results about
zero-knowledge protocols. This can be done by characterizing zero-knowledge proto-
cols as special bit commitment-schemes, and then using these special schemes instead
of bit commitment-schemés

We continue this line of research. That is, we construct special schemes from a spe-
cific class of zero-knowledge protocols, and then we use the special schemes instead
of bit commitment-schemes. Our schemes are simply functions. That is, by restrict-
ing ourselves to a specific class of zero-knowledge protocols we are able to construct
very simple non-interactive schemes. In contrast, the schemes of Vadhan [28] can be
constructed fronany zero-knowledge protocol, but they are interactive, and have an in-
volved definition (similar in flavor to that of zero-knowledge protocols). We stress that
although our schemes are constructed from specific zero-knowledge protocols, they can
be used in other zero-knowledge protocols, and in various settings. That is, our charac-
terization result yields a framework with wide applicability.

Our Results. We provide a new characterization of certain zero-knowledge protocols
as special bit commitment-schemes. To obtain this result we consider the notion of V-
bit protocols. Informally, in such protocols the prover sends the first messagthe
verifier sends back a random bjthe prover replies with a messagg, and the verifier
accepts or rejects. These protocols are very common in zero-knowledge. Examples in-
clude the perfect zero-knowledge4K) proof of [4] for GRAPH-ISOMORPHISM the
statistical zero-knowledgesgK) proof of [20] for certain lattice problems, tHg&zK
andPZK proofs of [25] for variants of $ATISTICAL-DISTANCE (SD), and more.

We construct an efficient functiofyx, b; r) from any V-bit zero-knowledge proto-
col for a promise-probleril £ (Ily,IIx). The inputs tof are a stringe, a bitb, and
randomness. The outputy of f hidesb whenzx is aYESinstance, and binds towhen
x is aNOinstance. More precisely, givan= f(x,b;r), if z € Iy, thenb cannot be
determined fromy, and ifx € Iy, theny can be a commitment to eith@ror 1, but not
both (i.e..y # f(z,1—0b;r") for all ¥'). Notice that unlike bit commitment-schemes, the
hiding and the binding properties ¢gfmay not hold simultaneously. Singeis a non-
interactive commitment-scheme fir, we call f a non-interactive instance-dependent
commitment-schenf®1C). Using the techniques of [10, 17] we get the following:

Main result (informal). A problemII has a V-bit zero-knowledge protocol if and only
if IT has aNIC.

The NIC f inherits its hiding property from the zero-knowledge property of the
V-bit protocol, and vice versa. For example, Bi&K protocols for the lattice problems

L A prover isefficientif given witness for inputz it runs in time polynomial injz|.

2 The idea of replacing a bit commitment-scheme with a special scheme is due to Itoh et al. [17].
However, [17] construct a special scheme (different from that of [28, 22]) for specific lan-
guages, whereas [28, 22] provide a characterization result.



of Micciancio and Vadhan [20] yield a statistically hididg C for these problems, and
vice versa.

The notion of V-bit protocols is related to Cramer’s notiontbprotocols [7]. These
protocols are similar to V-bit protocols in that they are éls@mund public-coin proto-
cols, but instead of sending a bjtthe verifier sends a string However, if we consider
V-bit zero-knowledg@rotocols, then the two notions are equivalent (the idea is to let
e be the bitb, followed by zeroes [11]). Thus, our characterization result applies to
Y-protocols as well.

An immediate corollary to the characterization result is a transformation from V-
bit honest-verifiezero-knowledge protocols thshonest-verifieV-bit zero-knowledge
protocols withefficient proversThe transformation preserves the zero-knowledge prop-
erty of the original protocol. When we apply it to, .e.g., the protocol of [25] for variants
of SD we immediately get a zero-knowledge protocol with an efficient prover for these
variants, a result previously proved in [20] using similar ideas.

To show that our characterization result yields a useful framework we prove that
NIC can be combined in a monotone boolean formula fashion (i.e.,A¥tbandOR
connectors). For example, ffis aNIC for GRAPH-ISOMORPHISM andg is aNIC for
the lattice problems of [20], then our lemma states that, ¢.g.g and f Vv g are also
NIC for the corresponding problems.

Second result (informal). The class of problems possessMiC is closed under arbi-
trary monotone boolean formulae.

In addition, we prove that any random self-reduci®SR) problem [2] has a per-
fectly hiding NIC. This folklore lemma follows from [27, 26], but here we provide the
proof for completeness. Let us see how combining these lemmas with our characteriza-
tion result yields a very useful framework.

Removing computational assumptions.Our framework allows replacing the bit
commitment-scheme in the protocol of Barak [3] wittN&C. The protocol inherits its
zero-knowledge property from the hiding property of Ni&_. For example, we get that
if a problem has a perfectly hidingIC, then it has a public-coin, round-efficient proto-
col (i.e., constant-round, with a negligible soundness error, and perfect completeness).
The protocol is @ZK argument with a strict, polynomial-tim@on-black-boxsimula-
tor. Notice that our protocol applies to problems that hadd@, whereas the protocol
of [3] applies to all ofNP. As in [3], our protocol assumes the existence of collision-
resistent hash functions. However, our result yi&d& protocols (as opposed €ZK
in [3]), and it does not use bit commitment-schemes.

Abstraction and closure. Our framework strengthens and simplifies the result of
Micciancio, Ong, Sahai, and Vadhan [19], who showed thét@with reversed proper-
ties’ can replace the bit commitment-scheme in the protocol of [24]. Unlike [19], since
we already have a characterization result, we do not need to construct dil€hfar
specific problems (e.g., APH-NONISOMORPHISM or to be familiar with their defin-
ition (e.qg., the lattice problems of [20]). Also, our framework shows that $lichare
closed under monotone boolean formulae. Thus, when we apply our framework to the

8 By "reversed” we mean that the hiding property hold\@instances of the problem (instead
of YESinstances), and the binding property holdsY@&Sinstances (instead &fOinstances).



theorem of [19] we get that arbitrary, monotone boolean formulae over a large class of
problems (which contains, e.g., the complement of any random self-reducible problem)
unconditionallyhave a concurrent zero-knowledge proof. Similar improvements apply
to local zero-knowledge [18], and quantum zero-knowledge [29].

Unifying previous works. Our framework unifies under the theme BIC the
results of Tompa and Woll [27], De Santis, Di Crescenzo, Persiano, and Yung [26], and
Itoh, Ohta, and Shizuya [17]. Actually, these works only consider the perfect setting,
and focus mainly oSR problems. In contrast, our framework includes problems that
are not known to b&SR, and it also considers the statistical and the computational
setting. Hence, we get stronger and more general results under one simple theme.

Related work. We use the idea of Dandgd [10] to obtain aNIC from any V-bit
zero-knowledge protocol. Feige and Shamir used a similar idea to construct a trapdoor
commitment-scheme from a bit commitment-scheme. Notice that the context of the
work of Damgard [10] was to investigate whether zero-knowledge imply bit commitment-
schemes. That is, [10] constructed an interactive bit commitment-scheme (as opposed
to a non-interactiveinstance-dependeebmmitment-scheme) from a proof of knowl-
edge for anyNP-hard relation, provided that the proof igaprotocol. In contrast, we
construct aNIC from any V-bit zero-knowledge protocol, regardless of whether the
underlying problem isNP-hard. Also, the binding property of ol¥IC follows from

the soundness of the underlying V-bit protocol, whereas in [10] the binding property is
computational, and follows from the hardness of the underlying problem.

Our lemma on the closure oFIC under monotone boolean formulae uses the ideas
of [26]. These ideas were also used in [25, 28] to show closure properties. Our lemma
is related to the closure results of Dafng and Cramer [9], and Cramer, Dad&ind, and
Mackenzie [8]. All these results are proved by modifying the original protocols to obtain
the closure. In contrast, we prove our closure result in a simple combinatorial setting
(usingNIC), and we always use the same underlying protocol of Blum [SNBr In
addition, the results of [9, 8] change the properties of the original protocol. For example,
in [9] the protocol becomes a private-coin protocol, and in [8] the protocol becomes a
4-round protocol. In contrast, since we work witiC, our underlying protocol does
not change.

Our NIC is related to versions dfD, a complete problem fo8ZK [25]. That
is, a problem has a perfectly (respectively, statistically) hid¥ig if and only if it

Karp-reduces t&D° (respectivelySD''/2). The notion of a perfectly hiding\IC

is implicit in [4], and formalized in [17]. The notion of a statistically hididgC was
formalized by [20]. Here we provide the computational analogue.

2 Non-interactive, Instance-Dependent Commitment-Schemes

We define non-interactive, instance-dependent commitment-sch&ifEys Using the
technique of [17] we show that if a problem hasN&C, then it has a V-bit zero-
knowledge protocol (this holds for computationally hidibgC if, in addition, the
problem is inNP). The protocol is also a proof of knowledge, and it inherits its zero-
knowledge property from the hiding property of tNéC.



Intuitively, abit commitment-schenadlows a sender to commit to a bitsuch that
the receiver cannot learn the valuetofyet the sender cannot chan@ielnformally,
a NIC is a bit commitment-scheme in which the hiding and the binding properties
depend on a string, and thus may not hold simultaneously. That is, insteafi(ofr)
we considerf(z, b; ), and the hiding and binding properties depend on whethga
YESon aNOinstance of some probleid. Formally,

Definition 2.1 (NIC). LetII = (IIy, IIx) be a promise-problem, and I¢{z, b; r) be
a probabilistic, polynomial-time Turing machine on inputandb € {0, 1}. The string
r denotes the randomness fof

We say thatf is binding onIly if for any = € IIy, and for anyr and+’ it holds
that f(z,0;7) # f(x,1;7"). We say thaf is perfectly(respectivelystatistically, com-
putationally hiding on Ily if for any z € IIy and eachb € {0,1} the ensembles
{f(z,0)}remy and{f(z,1)}.cm, are statistically identical (respectively, statistically
indistinguishable, computationally indistinguishable).

We say thaf is aperfectly(respectivelystatistically, computationaljyhiding NIC
for ITif f is binding onlly, and perfectly (respectively, statistically, computationally)
hiding onIIy.

When appropriate we will omit the random inpub f. Notice that iff is a perfectly
or a statistically hidingNIC for II, then as a class of problem# containsII. This is
so because it € Ily, then there is a paifr, ') such thatf (z,0; ) = f(x,1;r), and if
x € Iy, then no such pair exists. HowevBrmay not be ifNP if f is computationally
hiding . We give an example of a perfectly hidiNgC.

Example 2.1.NIC for the language 8APH-ISOMORPHISM[4, 17]. Let f(x, b;r) be
a function that given a pair of graphs = (G, G1) on n vertices uses to define
a random permutation over {1,...,n}, and outputyy = w(Gy). If the graphs are
isomorphic, thery is isomorphic to botlzy andG1, andb cannot be determined from
y. Conversely, if the graphs are not isomorphic, the@nnot be isomorphic to bothy
andG,. Thus,f is a perfectly hidingNIC for GRAPH-ISOMORPHISM

Our protocol follows the idea of [17], which uses the protocol of Blum [5] for the
NP-complete problem KWMILTONIAN -CIRUIT (HC). In the protocol of [17] the prover
and the verifier initially reduce the input of the problem possessingMIC to an
instanceZ of HC, and then execute the zero-knowledge protocol of [5] using\ite
as a bit commitment-scheme. Notice that the prover can transform its witnesmfor
awitness fol7, and thus it is efficient. When € 11y the scheme is hiding, and thus the
protocol is zero-knowledge. Whene Iy the scheme is binding, and thus the protocol
is sound. Our lemma follows. The proof is very similar to that of [17].

Lemma 2.1. If a problemII has a perfectly (respectively, statistically) hidingC,
thenIl has a public-coinPZK (respectivelySZK) proof with an efficient prover. If
IT € NP, andII has a computationally hidin@fIC, thenII has a public-coinCZK
proof with an efficient prover.

Itoh, Ohta, and Shizuya [17] observed thallihas a statistically hidingfIC, then
IT cannot beNP-complete, unless the polynomial hierarchy collapses [12, 1, 6]. In the



next section we show that V-bit zero-knowledge protocols Hi@ are equivalent.
Thus,NP-complete languages cannot have V-82ZK proofs, unless the polynomial
hierarchy collapses.

3 Characterizing V-bit Zero-Knowledge Protocols

We introduce the notion of V-bit protocols, and then show how to constri€i(a
from a simulator of any V-bit zero-knowledge protocol. Since the zero-knowledge pro-
tocols constructed in Section 2 for problems possesSiitgare V-bit zero-knowledge
protocols, we get our main theorem.

Theorem 3.1. A promise-problenil has aV-bit PZK (respectivelySZK) proof if and
only if II has a perfectly (respectively, statistically) hidingC. Similarly, IT has a
V-bit CZK proof if and only if IT € NP andII has a computationally hidinyIC.

We present the definition of V-bit protocols.

Definition 3.1 (V-bit protocol). LetII = (IIy, IIx) be a problem, and letP, V') be a
protocol forII with perfect completenes®/e say thatP, V') is V-bit if for any z € Ty
the interaction betweeR andV is as follows:P sendsn; to V, andV replies with a
uniformly chosen bit. P replies by sending, to V', andV accepts or rejects based
on{x,my,b,ma).

Using the idea of [10] we show how to construclN&C from a simulatorS' for
any V-bit zero-knowledge protocdP, V). The NIC will be hiding onYESinstances,
and binding onNOinstances. We start with the following idea to commit to a#bit
use randomnessto executeS on inputz, obtain a transcriptm;, ', ms) such that
b = v/ andV accepts, and output; as a commitment. I& is a YESinstance, then
the perfect completeness property guarantees that we always obtain transcripts where
V' accepts, and sindecannot be determined from suef,, the commitment is hid-
ing. Conversely, by the soundness(@f, V), if = is aNOinstance, then there are no
transcriptsimy, 0, m2) and(my, 1, mj) such thaf” accepts in both. The problem with
this idea is that’ may not be equal tb. To overcome this issue we redefine the com-
mitment to be(m4, b’ @ b). That is, we executé(z), obtain(m1,b’, ms), and output
(m1, ' @b). Intuitively, sinced’ is hidden, the bit' &b is also hidden. Thus, the scheme
is hiding. Our lemma follows.

Lemma 3.1. LetII = (Ily, IIx) be a promise-problem. I has aV-bit, public-coin
HVPZK (respectivelyHVSZK, HVCZK) proof, thenll has aNIC that is perfectly
(respectively, statistically, computationally) hidingdg and perfectly binding offily.

Proof. Fix a public-coin, V-bitHVPZK (respectivelyHVSZK , HVCZK ) proof(P, V')
for I1, and fix a simulatofs for (P, V'). Without loss of generality we can assume thiat
either outputs transcripts in whidh accepts, or it outputiail . UsingS we define a
NIC f for II as follows. Letf (x, b; ) be the function that executé&gx) with random-
ness-. If f obtains a transcriptz, m}, b, m4) such tha’ (z, m},v’,m,) = accept
then f outputs(m/, b’ @ b). Otherwisef outputsb.



We show thatf is binding onIly. Let z € Ilx. Notice that for anyr andb it
holds thatf(x, b; ) outputs one bit if and only iff (x,b;r) = b. Thus, if f outputs
one bit, then there are noand’ such thatf(z,0;7) = f(z,1;r’). For the case
where f(x, b; ) outputs a paifmiy, b), recall thath = b’ & b, whered’ is taken from
some transcripfz, m1,b’', m5). Thus, by the definition of, for anyriy, b,r andr’ it
holds thatf (z,0;r) = f(x,1;7') = (my,b) if and only if there aren, andm}, and
such thatV (z,m1,0,mg) = V(x,mq,1,m}) = accept . However,(P, V) is public
coin, and by the soundness property(&f V') there are nan;, ms andm/, such that
V(z,m1,0,mq) = V(z,m,1,m)) = accept . Hence, iff does not output one bit,
then there are ne andr’ such thatf(x,0;7) = f(z,1;r'). We conclude thaf is
perfectly binding ofdly.

The rest of the proof shows thtis hiding onlly. Starting with the statistical set-
ting, we calculate the statistical distance between commitmeritsutel commitments
to 1 overz € Ily. The following probabilities are over the randomneder f.

A(f(x,O),f(w,l)):fZIPr (z,0) = o] — Pr[f(z,1) = o|
=fZ|Pr F(x,0) = (m1,0)] — Pr[f(z,1) = (m1,0)]| +

3 Z [Pr(f(2,0) = (m1, )] = Pr(f(z,1) = (m1, ]| +

mi

5 S IPelf(,0) = b — Pr{f(e, 1) = 8]
b

For anyz we definep, &£ Pr [S(z) = fail ], where the probability is over the random-
ness taS. In addition, whert' is aHVPZK simulator we are assuming that = 0. By

the definition off, the above sum ovérequal,.. It remains to deal with the sums over

m1. We show that the first sum is upper boundedXy P, V')(z), S(z)) — p./2, and

since a symmetric argument applies to the second sum, the total will be upper bounded
by2-A((P,V)(z), S(z)). The following probabilities fok P, V') (x) andS(x) are over

the randomness tB, V and.S, respectively.

3 0m, [Prif(e, 0)=<m1,0>]—Pr[f( )=<m170>}|=

%Zml |ZPr m1,0 m2 ZPT m171,m2>]\
33 |ZP1~ = (m1,0,mp)] = Y _Pr[(P,V)(z) = (mq,0,my)]
ZPr = (m1,1,ma)] = Y Pr[(P,V)(x) = (ma,1,mg)])| <

%Zml,mQ (|PI‘[ ( ) = <m170’m2>] - PI‘[<P,V>(:U) = <m1107m2>]| +
[Pr[S(z) = (ma,1,ma)] — Pr[{P,V)(z) = (m1,1,my)][) =
A(<P7 V>($),S(J?)) _pw/Q .



Above we used the fact that outputs transcripts in whicly accepts, and then we
used the fact thatP, V') is public-coin (which implies that for any.; the proba-
bility to choose an element dfP, V')(z) whose prefix is(m;,0) equals the proba-
bility to choose an element dfP, V')(z) whose prefix is(m4, 1)). We conclude that
A(f(z,0), f(x,1)) <2-A(S(z), (P,V)(x)). Hence, ifS is aHVPZK (respectively,
HVSZK) simulator, therA(S(x), (P, V)(x)) is 0 for anyx € IIy (respectively, neg-
ligible on ITy), which implies thatf is perfectly (respectively, statistically) hiding on
IIy.

It remains to deal with the case th&tis a HVCZK simulator. The analysis is
analogues to the statistical setting, but in reverse. We define the furfttioh) just like
f, except that instead of executing the simulajdrreceives a transcrigtn,, b’, ma)
and outputgmq, b’ @ b). Thus, f/(S(x),b) and f(x,b) are identically distributed for
anyb € {0, 1}. Assume towards contradiction that there is a probabilistic, polynomial-
time Turing machine that distinguishe$ f (z,0) }zemr, and{f(x, 1)} zem, - Thus,D
distinguisheq f'(S(x),0) } zemny @and{f’(S(x),1)}+cmy , and the following expression
is non-negligible:

[Pr[D(f'(S(2),0)) = 1] = Pr[D(f'(S(2),1)) =1]| <
[Pr[D(f(S(x),0)) = 1] = Pr[D(f'((P,V)(x),0)) = 1]| +
[Pr[D(f'(S(x),1)) = 1] = Pr[D(f'((P, V) (x), 1)) = 1]] .
Above we used the fact thaP, V') is V-bit, which implies thatf’((P, V')(z),0) and
f'((P,V)(x),1) are identically distributed for any € IIy. It follows that there is
b € {0,1} such thatD distinguishes{f'({(P,V),b)}ser, and {f'(S(x),b)}zemy -
Sincef’ is efficient, this contradicts the fact theiis aHVCZK simulator. We conclude
that f is computationally hiding oily. The lemma follows.

Theorem 3.1 presented in the beginning of this section immediately follows from
Lemmas 2.1 and 3.1. Thus, we get a characterization of V-bit zero-knowledge protocols
asNIC. We remark that Theorem 3.1 can be extended to arguments, and to relaxed
notions ofV-bit protocols.

4 Random Self-Reducibility ImpliesNIC

We prove the folklore theorem that if a probldiis random self-reducible, theli

has a perfectly hidingNIC. Our proof uses the idea behind the construction of the
subroutine in the protocol of [26] (see Secti®3 in [26]). Combining this theorem
with our closure result from the next section allows us to strengthen and unify the
results of [27, 26, 17], and achieve all the improvements claimed in the introduction.
We define random self-reducibility.

Definition 4.1 (Random self-reducible language [2])Let NV C {0,1}* be a count-
able set such thaR,, is anNP-relation for eachw € N. Thedomainof R, is denoted
d(R.) = {z|3w (z,w) € R,}. The languagd. = {(z, z)|z € N, Fw (z,w) € R, } is
random self-reducible (RSH)there are polynomial time algorithms, A, A,, and.S
suchthatS(z, z;7) = y € d(R,) foranyxz € N, z, andr, and the following conditions
hold.



1. If z € d(R,), andr is uniformly distributed, thery is uniformly distributed in
d(Ry).

2. Awitness foy yields a witness fot, and vice versa. That isz, A; (z,y,r,w')) €
R, forany(y,w’) € R,, and(y, As(x, z,7,w")) € R, forany(z,w”) € R,.

3. G(z;r) = (¢/,w') € Ry, and ifr is uniformly distributed, ther’ is uniformly
distributed ind(R, ), andw’ is uniformly distributed if{w|(z, w) € R, }.

We prove that random self-reducible problems have a perfectly hidiag Given
N andR, as in Definition 4.1 we define the probleifl = (1T}, 11k, wherelly =
{{z,2)|z € N, 3w (z,w) € R,}, andlly = {(z, 2)|z € N,Vw (z,w) ¢ Ry}

Lemma 4.1. If L is a random self-reducible language, thER has a perfectly hiding
NIC.

Proof. LetL = {(z, 2)|z € N, 3w (z,w) € R, } be arandom self-reducible language.
Consider the algorithm$ andG from Definition 4.1. LeiG’ (z; r) be the algorithm that
executes7(x; r), obtains(z’, w’), and outputs’. We useS andG’ to commit to0 and
1, respectively. Formally, we define oW C to be the probabilistic, polynomial-time
Turing machinef (x, z, b; ) that on input(z, 2) € TI% UTIX, bit b, and randomness
outputsS(z, z;r) if b =0, andG’(z;r) if b = 1.

The efficiency off follows from the efficiency ofS andG. We show thatf is per-
fectly hiding. By Definition 4.1,5(z, z;7) = y is uniformly distributed oved(R,) if
r is uniformly distributed, andz, z) € II%. Similarly, G(z;r) = (2/,w’), andz’ is
uniformly distributed overl(R,,) if r is uniformly distributed and: € A. Since the
output of f is uniformly distributed oved(R,,) for anyb and(z, z) € II%, the ensem-
bles{f(x,2,0;7)} (s s eme. @nd{f(z,z,1;7)}, .yem are statistically identical, and
thereforef is perfectly hiding oll%.

We show thatf is binding onIl%. Let (z, z) € II%. Assume towards contradic-
tion that there are: and+’ such thatS(xz, z;r) = f(x,2,0;r) = f(x,2,1;r") =
G'(z;r). Lety = S(x, z;r). By the definition ofG’, there isw’ such thatG(z;r) =
(G'(z;7),w"y = (y,w') € R,. By the property ofd; from Definition 4.1, it follows
that (z, Ay (z,y,r,w’)) € R,. Hence,(z,z) € II%, in contradiction to the choice of
(z, z) € IIk. Thus,f is binding onIIX.

Notice that in the above proof we did not use Algorittdn from Definition 4.1.
Neither did we use the fact thakt, runs in polynomial time, nor did we use the witness
outputted byG.

5 Closure of Problems PossessimyIC under Monotone Boolean
Formulae

We use the technique of [26] to show that the class of problems possééRihe
closed undearbitrary (as opposed to fixed) monotone boolean formulae. For perfectly
hiding NIC the analysis is simple, but for statistically and computationally hitNig

the analysis is more complicated.



Motivation. Let f be a perfectly hidindNIC for a problemIl. Consider a prover and
a verifier who are given instances, . . ., z,, € Iy U Ily, and suppose that the prover
wants to prove to the verifier that more than half of this are inIly. This statement
can be expressed using the logical conneddiB(denotedr) andOR(denoted/). The
prover can prove this statement if we can constru§i@ f’ that is hiding when more
than half of ther; are inIly, and binding otherwise. This is so because the statement is
anNP statement, and the prover can y$én the protocol of Blum [5] (as in Section 2).
Later we will give a general construction that yields sy¢hFor now we consider the
simple case where = 2. That is, the prover proves that bath andx; are inIly.

To formulate the fact that the statement being provedyisc Iy A 1 € Iy
we define the common input &8, 2o, x1), where¢ = a A b. Recall that we want
to use theNIC f for II to construct aNIC f’ which is hiding whenzy € TIy A
21 € Ily, and binding otherwise. We can construct syidby definingf’ (o, z1,b) <
(f(xo,b), f(x1,b)). Thus, ifzg, x1 € Iy, then bothf (zo, b) andf(z1, b) hideb, which
implies thatf” is hiding, and ifz; € Iy (for somei € {0, 1}), thenf(z;, ) binds tob,
and f’ is binding. Notice that we omitted the randomnesg’ofrom the notation, but
the intention is thaf’ uses independent randomness in each executign of

We can formulate other statements too. For example, consider a prover and a verifier
who are givenzg, x1, and the prover wants to prove that eithgre IIy orx; € Ily.
Again, we can formulate this statement by defin{@dgzo, «1) as the input, where¢ =
a V b. Recall that we want to use tRéIC f for II to construct aNIC f’ which is
hiding whenxy € Iy V x; € Ily, and hiding otherwise. We can construct siychy
defining f'(zo, 1, b) « (f(zo,b0), f(x1,b1)), whereby is uniformly chosen, and is
chosen such thdl @ b; = b. Thus, ifxg, z; € Iy, then bothf(zo, ) and f(xz1,b)
bind tob, which implies thatf’ is binding, and ifx; € IIy (for somei € {0, 1}), then
f(z;,b) hidesb;, and thusf hidesb. Based on thes& andV cases we can give a general
construction of &NIC f’ from aNIC f.

Construction 5.1. Let f be aNIC, and letb € {0,1}. Let¢ be a monotone boolean
formula over the variables,...,a,,, and let¥ = (x1,...,z,) be a vector ofn
strings, wheren > m. Letr € {0,1}* be a uniformly distributed input t¢’.

The recursive functioif’ (¢, Z, f, b; r) is defined as follows.

=

If = a; for somel < i < m, then returnf(z;,b,r).

2. Otherwise, there are monotone boolean formulg@and ¢, such thatp = ¢g A ¢1
or ¢ = ¢g V ¢1. Partitionr into ry andr.

3. Ifp = po A é1, thenreturn(f'(¢o, Z, f,b,70), f' (61, Z, f,b,71)).

4. If p = ¢ V ¢1, then return(f’(¢o, Z, f, bo,70), f' (1, T, f,b1,71)), Whereby €

{0, 1} is uniformly distributed, and, is chosen such that @ b; = b.

Our next step is define a problem that allows the prover to paolirary (as op-
posed to fixed) monotone, boolean formula statements. We need the following defin-
itions. A boolean variablds a variable that can only take the valuesr 1. We say
that ¢ is a monotone boolean formula df is a boolean variable, af is ¢y A ¢1 Or
¢o V ¢1, where bothp, and¢; are monotone boolean formulae. Uét= (ITy, IIx)
be a promise-problem, and lete IIy U IIy. Thecharacteristic functionyy of IT is
defined as follows: ifc € Iy, thenx(z) = 1, and ifz € Iy, thenyp(x) = 0. Leto



be a boolean formula oves, . . ., a.,, andletrq, ..., z, € IIy UIly for somen > m.
Theevaluationof ¢ in & = (x1,...,x,) is denoted)(Z), and equals if and only if ¢
is satisfied whem; is assignedr; (z;) for eachl <i < m.

We say that a clas€’ of problems is closed underrbitrary, monotone boolean
formulae ifII € C implies that®(II) € C, where®(II) is defined as follows.
Definition 5.1. LetIl = (ITy, IIx) be a problem. The proble(I1) < (& (II)y, ®(II)x)
is defined as

f

I8

P(I)y =
(M)y =

&, 1, zn)d(xu(21), - - -, xm(zn)) = 1}
g, z1,. ., zn)o(xn(z1), ..., xm(2n)) = 0},
where¢ is a monotone boolean formula ovey, . . ., a,, such thatm < n, andz; €

Iy UTIy forall 1 < i < n. We defingb(I1)* £ (®(ID)%, ®(I)y), whered(IT) is
defined as

1%

(I)(H)l§' d:a <¢7x17' . -7$n>‘¢(XH($1>7~ .. >XH($n)) =1AVi |$Z|k Z |¢7x17' .. axnl}'

The definition of®(II) allows the prover to proverbitrary (as opposed to fixed)
monotone, boolean formula statements, and so does the definitip{Tiok. This for-
mulation has the advantage that the formula does not have to be hardwired into the
protocol, or known in advance. Our theorem follows.

Theorem 5.2. LetII = (Ily, IIx) be a promise-problem with HIC f, and letf’ be
the function constructed frorf, given in Construction 5.1. Lét € N.

1. If f is a perfectly hidingNIC for II, then f’ is a perfectly hidingNIC for ®(II).
2. If f is a statistically (respectively, computationally) hidiNgC for II, then f’ is a
statistically (respectively, computationally) hidingC for & (I1)k.
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