
Semantically Non-preserving Transformations
for Antivirus Evaluation

Erkan Ersan1, Lior Malka2, and Bruce M. Kapron1(B)

1 Department of Computer Science, University of Victoria, Victoria, Canada
erkanersan@gmail.com, bmkapron@uvic.ca

2 Faculty of Graduate Studies, University of Victoria, Victoria, Canada
lior34@gmail.com

Abstract. We relax the notion of malware obfuscation to include
semantically non-preserving transformations. Unlike traditional obfus-
cation techniques, these transformation may not preserve original code
behaviour. Using web-based malware we focus on transformations which
modify abstract syntax trees. While such transformations yield syntac-
tically valid programs, they may yield dysfunctional samples, so that
it is not clear that this is a practical approach to producing detection-
evading malware. However, by implementing an automated system that
efficiently filters dysfunctional samples on a virtual cloud architecture,
we show that such transformations are in fact practical. Using two simple
transformations, we evaluated four antivirus products and were able to
create many samples that evade detection, demonstrating that semantic-
preserving obfuscation is not the only effective way to mutate malware.

1 Introduction

Recent data breaches at Target, Home Depot, JPMorgan Chase, Apple iCloud,
and Sony (to name a few) highlight the constant pressure that cyber-attackers
put on users and corporations alike [8]. Many attacks use malware, that is soft-
ware with some form of malicious functionality [4], to steal financial informa-
tion, intellectual property, and private data such as usernames and passwords.
An antivirus is a tool for malware detection. Since many organizations rely on
antiviruses for protection, it is important to evaluate antivirus effectiveness.

Obfuscation is a well known technique used by malware authors to create
new malware mutations that evade detection. Obfuscation modifies code, while
retaining its behaviour [6]. For example, in the context of HTML and Javascript,
renaming might transform the code payload=1; print(payload) into x=1;
print(x), while partitioning might transform the code str =‘‘abc’’ into str
=‘‘a’’+‘‘bc’’. See [15] for more examples.

Christodorescu and Jha [5] proposed a methodology to evaluate antivirus
products against obfuscated versions of known malware. They applied this idea

Research supported by Intel as part of the Collaborative Project “Automated
Antivirus Evaluation via Malware Mutations”.

c© Springer International Publishing AG 2017
F. Cuppens et al. (Eds.): FPS 2016, LNCS 10128, pp. 273–281, 2017.
DOI: 10.1007/978-3-319-51966-1 18



274 E. Ersan et al.

to Visual Basic malware in Microsoft Office [5]. The same methodology was used
in the context of Java malware in Android applications [13,16] and Javascript
malware in HTML files [15]. Industry test labs follow the same approach [3].

Our research was motivated by considering the extension of [5] to the set-
ting of browser-delivered malware (“drive-by downloads”,) using HTML- and
Javascript-based malware for Internet Explorer produced by Metasploit [9]. Man-
ual experimentation indicated that malware obfuscated using traditional tech-
niques (along the lines of e.g. [15]) were detected, but techniques which would
not obviously produce semantically equivalent code (e.g. altering HTML ele-
ments, permuting lines of JavaScript) produced malware which still delivered
its payload, but was no longer detectable. This experiment, and the analysis
in Sect. 5, indicates that anti-malware tools should not be designed under the
assumption that all mutations must result from obfuscation. For example, [10]
proposed detection of malware mutations using a method that assumes mutant
malware preserves semantics, an assumption challenged by our results.

Semantically non-preserving transformations have several disadvantages
compared to obfuscation. With obfuscation, millions of mutations can be gen-
erated efficiently, they are all guaranteed to work, and if one class of trans-
formations (e.g. variable renaming) bypasses detection, then most likely other
mutations in this class also bypass detection. We show that, despite their dis-
advantages, semantically non-preserving transformations can be efficient and
practical. Our main contribution is a cloud based system that automatically
and efficiently generates malware mutations. The system is generic. It will work
with any antivirus, any malware, and any transformation, including obfusca-
tion. It even supports composition of transformations. Our system also scales
linearly; doubling the size of the cloud reduces the computation time by half.
We evaluated four antiviruses using two simple transformations, and yet were
able to create many mutations that evade detection. Our system is different from
script-based approaches used in prior work due to the specific challenges of our
transformations. These challenges, and our solutions are discussed in detail in
Sects. 3 and 4.

Our works focuses on obfuscation of what we might call transporter code, that
is, the HTML/Javascript code which triggers an exploit allowing the delivery of
a payload written in x86 code. While obfuscation of the payload is also a well-
known technique for evading detection, our abstract-syntax based approach is
not directly applicable to such obfuscations.
Related work. Evaluation of antivirus effectiveness via malware mutations have
been considered in [5,11,13,14,16]. A formal framework for this method has been
given as well (e.g., [7]). The reason for this evaluation method is that hackers
evade detection by tweaking their malware. Unlike [5,13,16], which use obfusca-
tion, we use transformations that do not preserve the semantics of the malware.
We show that our transformations yield functional and undetectable variants.
Also, unlike [5,13,16], where each component is automated, but not the system
as a whole, our software is fully automated and non supervised. A recent industry
report that evaluated eleven antiviruses against HTML malware [3] showed that



Semantically Non-preserving Transformations for Antivirus Evaluation 275

all antiviruses detected all HTML obfuscation. Our results show that evaluations
which consider only transformations that preserve semantics are incomplete. In
[12] a semantics-based approach to malware detection is proposed, including a
definition of non-conservative obfuscation which is a generalization of our notion
of semantically non-preserving transformation. We have not investigated the sig-
nificance of our results in this broader framework.

2 Semantically Non-preserving Transformations

In formulating a notion of transformations which preserve semantics, we are
faced with several choices. In the most general setting, we would need to formally
model all the effects of executing a piece of code. This could involve modifications
to state and side-effects involving not only memory, but also files, communication
channels, etc. We will take a more practical perspective, tailored specifically
to the setting of malware deployment and detection, and depends only on the
ability of a piece of code to deliver a specified payload. See [12] for a more general
approach to semantics-based notions of obfuscation.

We consider transformations T : Code × AuxT → Code. In particular we
have T (m, r) = m′ where m is the code to be modified and r is some auxiliary
information and m′ is the mutated code. The auxiliary information r depends
on the transformation T . For example, in the case of variable renaming, AuxT

will consist a collection of variables and all strings to which the variables in
question may be mapped. We then say that T is semantically preserving with
respect to malware m if T (m, r) = m′ executes the same payload as m, for any
r ∈ AuxT . For example, obfuscation is always semantically preserving, whereas,
in our above mentioned experiment, the transformation T that replaces table
with various element names is semantically non-preserving, because there are r
such that T (m, r) = m′ is not malware. On the other hand, if T (m, r) = m′ is
malicious, it is not necessary that m′ exploits a different vulnerability compared
to m, or that m′ executes other things beyond the payload of m. It only means
that m′ is allowed to be computationally different from m, as long as it executes
the payload, and that T is allowed to output dysfunctional samples (that is,
samples that do not execute the payload).

Because we admit transformations that output dysfunctional samples, we
must address the issue of how generated samples may be used to test AV effec-
tiveness. We describe our approach in Sect. 4 below, but in short we filter out
dysfunctional samples by executing each sample and detecting whether it is able
to deliver a payload. In practise this post hoc approach will produce samples that
are not obtained using traditional obfuscation techniques.

3 The Generator

In this section we describe the software components that take an HTML file,
possibly containing Javascript, and generate variants of this file. The variants



276 E. Ersan et al.

may or may not be malware. We collectively refer to these components as the
Generator.

As discussed previously, we focus on a simple class of transformations, namely
those which apply simple modifications to the abstract syntax tree (AST) of
an HTML sample document. We implemented two transformations, permute
and subset, both operating only on nodes that have children. its statements as
children. By permute we mean reordering of the children, and by subset we mean
removing some of the children. These transformations usually do not preserve
the semantics of the original HTML file.

While our goal was to apply these transformations in as general and auto-
matic a way as possible, it is clear that blindly applying these transformations
to the entire AST results in a combinatorial explosion making the approach
infeasible. In particular, for an AST with n nodes, subset will generate O(2n)
mutations, while permute will generate O(n!). We address this issue by special-
izing transformations to a distinguished subset of nodes, a technique we refer
to as per-node transformation. Currently, we have not addressed the question of
general strategies for assigning transformations to nodes. For our experiments
we are doing this in an ad hoc fashion.

4 The Infrastructure

In this section we describe the software components that take original HTML
files, transform them into new HTML variants, test whether the variants are
functional (that is, they execute the payload), and if so, whether they are
detectable as malware by various antivirus products. We collectively refer to
these components as the Infrastructure.

This Infrastructure is realized via a producer-consumer model wherein a pro-
ducer inserts jobs into a queue, blocking if the queue is full, and a consumer
removes jobs from the queue and executes them, blocking if the queue is empty.
Multiple producers and consumers can run concurrently, using database tables
for queues and transactions for synchronization. While the use of virtualization
in testing malware detection is not new, our automated concurrent infrastructure
is unique. In practice, this means that we were able to perform fully automated
tests involving several antivirus products and millions of malware variants.

In more detail, generator threads produce HTML variants for the functional-
ity workers, who test whether HTML variants execute a payload. If a variant is
functional, then the functional worker produces a job for the antivirus workers,
who then test whether the variant is detectable or not.

In order to maintain automation, we need a simple test to determine func-
tionality. We chose the creation by the malware of a text file on the desktop.
A possible objection to this approach is that in a real-world setting such an action
would be benign in terms of impact on the target system, and that more mali-
cious effects could be detected by other components of a detection or intrusion
protection system. With respect to the first objection, we note that the degree
of control required to allow the malware to perform the file creation effect would



Semantically Non-preserving Transformations for Antivirus Evaluation 277

also allow it to perform more obviously malicious actions. This brings us to the
second objection. Here we note that it is essential for all components of such a
system to provide the highest degree of security possible. There is no guarantee
that if any one component fails some other component will be able to compen-
sate. Indeed, malware designers are able to combine evasion techniques to take
advantage of weaknesses in any one detection component.

When a browser loads an HTML file, it stores it as a file in a temporary direc-
tory, and this triggers the detection mechanism of some antiviruses. However,
due to the asynchronous nature of operating systems, quite often the antivirus
detects the file as malware only after the browser has processed the HTML
file and the malware has successfully executed. In such cases we consider the
malware as being undetectable.

5 Experiments

We selected four popular antivirus products from the websites of the following
companies: AVG, Kaspersky, McAfee, and Symantec. We have chosen not to
disclose which product is susceptible to each method, and thus have randomly
named them AV1, AV2, AV3, AV4. In all cases we downloaded the consumer
grade version, and evaluated it automatically using our infrastructure.

We reviewed more than thirty Internet Explorer malware samples from
Metasploit [9]. Unfortunately, not all were suitable for testing due to stabil-
ity or compatibility reasons. Hence, only seven were chosen. We refer to these
files, labelled S1 through S7, as the originals. All originals have a benign pay-
load that creates a dummy text file on the desktop. Samples S6 and S7 did not
parse with the parser of [1,2], while sample S5 had a payload that could not be
configured. Thus, we could only experiment with the first four samples. Sample
S1 was pure HTML, and the rest contained Javascript code. All samples were
evaluated on Windows7 64-bit SP 1 and Internet Explorer 8.
Test Definitions. We define an HTML file to be functional if and only if the
dummy is created when the HTML file is loaded by the browser. We note that,
since malware can destabilize the operating system, we have to timeout our tests,
which may incorrectly label a functional variant as non functional. However, this
is not a concern. The important thing is that the opposite cannot happen.

Although we use the notion of detection, we follow industry practise [3] and
measure prevention. i.e., whether the payload is prevented from executing. Pre-
vention is stronger than detection because, once malware gets control, it can do
anything, including disabling the antivirus, and detection in particular.

Our antivirus evaluation consisted of two tests. In the static test (denoted S)
we invoked the antivirus from the command line, with the HTML file as input.
In the dynamic test (denoted D) the browser loaded the HTML file from an
external HTTP server. In the static test, some antiviruses remove the file before
we even have a chance to invoke the antivirus from the command line. In such a
case we treat the HTML file as being detected. Conversely, in the dynamic test,



278 E. Ersan et al.

if the dummy text file is created, then the payload has executed. Thus, even if
the antivirus produces an alert, we consider the file as being undetected.

Analysis. The evaluation of the originals is given in Table 1. It shows four
antiviruses evaluated against seven malware files, in both static and dynamic
tests. We use 1 for detected and 0 for undetected. If the payload finished exe-
cution, but with high probability was later detected, then we denote it by 0a.
Interestingly, AV3 can statically detect originals S3 through S6, and exactly those
are detected in the dynamic test, but only after the payload executes. This pro-
vides a strong evidence that AV3 is signature based only, not using any runtime
information. Notice that AV2 dynamically detected all malware. However, this
is expected because all the samples are a few years old, on average.

Table 1. Static (S) and Dynamic (D) tests for the original samples

Sample AV1 AV2 AV3 AV4

S D S D S D S D

S1 0 1 1 1 0 0 0 1

S2 0 0 1 1 0 0 0 1

S3 1 1 0 1 1 0a 0 0a

S4 1 1 1 1 1 0a 0 1

We evaluated the antiviruses by submitting jobs to our system. Each job
described the original, the transformation, and the antiviruses to test. These
jobs, given in Table 2, show that we found thousands of new malware variants.

Table 2. Jobs showing new HTML variants generated from originals

Sample Transformation Generated Functional

S1 Permute all 24 24

S1 Subset all 42 20

S2 Permute all 101674 1293

S2 Subset all 48 0

S2 Subset node 27 32768 2

S2 Subset node 20 4096 8

S3 Permute node 30 720 66

S3 Subset node 30 64 2

S3 Subset node 20 4096 8

S3 Subset node 32 524288 1

S3’ Permute node 30 108053 30

S4 Permute all 193070 7493

S4 Subset all 81494 0

S4 Subset node 10 3526 0

S4 Subset node 5 60 0



Semantically Non-preserving Transformations for Antivirus Evaluation 279

Not all jobs ran to completion, which is why some of them generated fewer
variants than others under the same transformation. We suspended generator
threads when we saw that others were creating functional variants. This reduced
the workload on the functional workers. The transformation Permute all means
that each node has a permute transformation, and similarly for Subset all. Other
transformations are per node, usually assigned to Javascript nodes of the abstract
syntax tree. Since they are assigned to different parts of the tree, there are no
overlapping variants. The sample S3’ is essentially the same as S3, but has a
different AST, hence node 30 does not correspond to node 30 from S3.

Table 3. Number of Statically (S) and Dynamically (D) undetectable malware variants

Sample Transformation Functional AV1 AV2 AV3 AV4

S D S D S D S D

S1 Permute all 24 24 24 0 0 24 24 24 0

S1 Subset all 20 20 20 0 0 20 20 20 12

S2 Permute all 1293 1293 1293 1293 0 1293 1293 1293 0

S2 Subset all 0 0 0 0 0 0 0 0 0

S2 Subset node 27 2 2 2 2 0 2 2 2 0

S2 Subset node 20 8 8 8 8 0 8 8 8 0

S3 Permute node 30 66 65 65 66 0 66 66 66 0

S3 Subset node 30 2 1 1 2 0 2 2 2 0

S3 Subset node 20 8 0 0 8 0 8 8 8 0

S3 Subset node 32 1 0 0 1 0 1 1 1 0

S3’ Permute node 30 30 0 0 30 0 30 30 30 2

S4 Permute all 7493 0 0 0 0 0 5818 7493 0

S4 Subset all 0 0 0 0 0 0 0 0 0

S4 Subset node 10 0 0 0 0 0 0 0 0 0

S4 Subset node 5 0 0 0 0 0 0 0 0 0

The detection effectiveness of the antiviruses is given in Table 3. The table
shows that most of the functional variants that we have created are undetectable
by at least one antivirus. It proves that antiviruses cannot be evaluated based
on mutations only. It also indicates that any detection mechanism that assumes
that mutations must preserve the semantics of the original [10], may fail to work.

Table 3 provides the raw results, unabridged. The last three rows are all
zero because these jobs did not produce functional variants, and thus have been
suspended. No sample was dynamically undetectable by AV2. However, man-
ual experiments with this antivirus showed that a map transformation yields
statically and dynamically undetectable malware variants. The map is not an
obfuscation as it replaces HTML elements with non equivalent ones. Other vari-
ants can be obtained by composing two obfuscation methods (string partitioning



280 E. Ersan et al.

and BASE64 encoding). We interpret these experiments as evidence that our
software is basic, and needs more transformations.

6 Conclusions

We have demonstrated that semantics-preserving obfuscation is not the only way
to produce malware mutations. By relaxing the notion of obfuscation to that of
semantically non-preserving transformations, we were able to obtain transfor-
mations that produce functional mutations. We developed a virtualized testing
environment which allowed us, using two simple transformations, to generate
thousands of samples which were undetectable by commercial AV products. Our
results demonstrate the viability of obfuscation techniques that do not preserve
code semantics. This does not mean that such mutations are more malicious, or
should be considered as a replacement for traditional code obfuscation. Rather,
they should be viewed as another threat, alone or in combination with other
techniques, that anti-malware technology must be able to prevent.

References

1. jsoup: Java HTML parser. http://jsoup.org/apidocs/
2. Rhino. http://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
3. Abrams, R., Ghimiri, D., Smith, J.: Corporate AV/EPP comparative analysis -

exploit evasion defenses. Technical report, NSS Labs (2013)
4. CERT UK. An introduction to malware (2014). www.cert.gov.uk/resources/

best-practices/an-introduction-to-malware/
5. Christodorescu, M., Jha, S.: Testing malware detectors. In: Avrunin, G.S.,

Rothermel, G. (eds.) ISSTA 2004, ACM (2004)
6. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-

tions. Technical report 148, University of Auckland, New Zealand, July 1997
7. Filiol, E., Jacob, G., Liard, M.: Evaluation methodology and theoretical model for

antiviral behavioural detection strategies. J. Comput. Virol. 3(1), 23–37 (2007)
8. Granville, K.: 9 Recent Cyberattacks Against Big Business. New York Times,

5 February 2015
9. Kandias, M., Gritzalis, D.: Metasploit the penetration tester’s guide. Comput.

Secur. 32, 268–269 (2013)
10. Kwon, J., Lee, H.: Bingraph: discovering mutant malware using hierarchical seman-

tic signatures. In: MALWARE 2012, pp. 104–111. IEEE Computer Society (2012)
11. Maggi, F., Valdi, A., Zanero, S.: Andrototal: a flexible, scalable toolbox and service

for testing mobile malware detectors. In: Enck, W., Felt, A.P., Asokan, N. (eds.)
SPSM@CCS 2013, pp. 49–54. ACM (2013)

12. Preda, M.D., Christodorescu, M., Jha, S., Debray, S.K.: A semantics-based app-
roach to malware detection. ACM Trans. Program. Lang. Syst. 30(5), 25 (2008)

13. Rastogi, V., Chen, Y., Jiang, X.: Droidchameleon: evaluating android anti-malware
against transformation attacks. In: Chen, K., Xie, Q., Qiu, W., Li, N., Tzeng,
W.-G. (eds.) ASIACCS 2013, pp. 329–334. ACM (2013)

14. Rastogi, V., Chen, Y., Jiang, X.: Catch me if you can: evaluating android anti-
malware against transformation attacks. IEEE Trans. Inf. Forensics Secur. 9(1),
99–108 (2014)

http://jsoup.org/apidocs/
http://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
www.cert.gov.uk/resources/best-practices/an-introduction-to-malware/
www.cert.gov.uk/resources/best-practices/an-introduction-to-malware/


Semantically Non-preserving Transformations for Antivirus Evaluation 281

15. Xu, W., Zhang, F., Zhu, S.: In: MALWARE 2012, pp. 9–16. IEEE Computer Society
(2012)

16. Zheng, M., Lee, P.P.C., Lui, J.C.S.: ADAM: an automatic and extensible platform
to stress test android anti-virus systems. In: Flegel, U., Markatos, E., Robertson,
W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 82–101. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-37300-8 5

http://dx.doi.org/10.1007/978-3-642-37300-8_5

	Semantically Non-preserving Transformations for Antivirus Evaluation
	1 Introduction
	2 Semantically Non-preserving Transformations
	3 The Generator
	4 The Infrastructure
	5 Experiments
	6 Conclusions
	References


