
Efficient Reliable Communication over Partially Authenticated
Networks∗

Amos Beimel Lior Malka

Dept. of Computer Science
Ben Gurion University, Beer Sheva 84105, Israel.

Email: beimel,liorma@cs.bgu.ac.il
January 14, 2004

Abstract

Reliable communication between parties in a network is a basic requirement for executing any pro-
tocol. Dolev [7] and Dolev et al. [8] showed that reliable communication is possible if and only if the
communication network is sufficiently connected. Beimel and Franklin [1] showed that the connectivity
requirement can be relaxed if some pairs of parties share authentication keys. That is, costly communi-
cation channels can be replaced by authentication keys.

In this work, we continue this line of research. We consider the scenario where there is a specific
sender and a specific receiver. In this case, the protocol of [1] has nO(n) rounds even if there is a single
Byzantine processor. We present a more efficient protocol with round complexity of (n/t)O(t), where n
is the number of processors in the network and t is an upper bound on the number of Byzantine processors
in the network. Specifically, our protocol is polynomial when the number of Byzantine processors is
O(1), and for every t its round complexity is bounded by 2O(n). The same improvements hold for
reliable and private communication. The improved protocol is obtained by analyzing the properties of a
“communication and authentication graph” that characterizes reliable communication.

Key Words. Reliable communication, Fault tolerance, authentication, Incomplete networks.

1 Introduction

Suppose that some processors are connected by an incomplete network of reliable channels. The processors
cooperate to execute some protocol, but some of them are maliciously faulty. Dolev [7] and Dolev et al. [8]
proved that if there are t faulty processors, then every pair of processors can communicate reliably if and
only if the network is (2t+1)-connected. Beimel and Franklin [1] showed that the connectivity requirement
can be relaxed if some pairs of parties share authentication keys. That is, costly communication channels
can be replaced by authentication keys.

In this paper we consider the problem of “single-pair” reliable communication in partially authenticated
networks. In this problem there is a specific sender a who wants to send a message to a specific receiver b,
such that any coalition of at most t faulty processors cannot prevent this transmission. The communication
channels in the network define a natural “communication graph,” with an edge between two vertices for
every channel between two processors. The pairs of parties sharing authentication keys define a natural
“authentication graph,” with an edge between two vertices for every shared key. The partially authenticated

∗A preliminary version of this paper appeared in [2].

1

network, which is the union of the two graphs, is given and known to all of the processors. To enable reliable
communication from a to b there must be at least t+1 disjoint paths from a to b in the communication graph
(otherwise, there are t vertices that can fail-stop, disconnecting a from b). If a and b share an authentication
key and there are t + 1 disjoint communication paths from the a to b, then reliable communication from a
to b is possible and efficient. But what if a and b do not share an authentication key? Giving them a key
involves expensive key distribution and key maintenance. Our goal is to achieve reliable communication
from a to b using the existing communication and authentication capabilities of the two graphs.

Beimel and Franklin [1] characterize when reliable communication is possible using these two graphs;
their characterization depends on recursively defined graphs which include all of the edges of the commu-
nication graph and some of the edges of the authentication graph. However, the reliable protocol presented
by Beimel and Franklin [1] is inefficient; it requires nO(n) rounds, where n is the number of processors in
the network. In this paper we present a more efficient protocol obtained by exploiting the properties of the
graphs that characterize reliable communication.

Historical Notes. The connectivity requirements for several distributed tasks in several models has been
studied in many papers; for example Byzantine agreement [7, 11], approximate Byzantine agreement [9, 24],
reliable message transmission [7, 8], and reliable and private message transmission [19, 8, 20, 23]. Simple
impossibility results and references can be found in [11, 18]. We mention that in Byzantine agreement all
honest parties should agree on the same message while in reliable communication only the transmitter and
the receiver agree on the message. Beimel and Franklin [1] considered the connectivity requirements in par-
tially authenticated networks. In addition to the “single-pair” version of the problem, they characterize when
reliable transmission is possible in the “all-pairs” version. In this version any transmitter should be able to
reliably transmit a message to any receiver, such that any coalition of at most t faulty processors cannot
prevent this transmission. Sayeed, Abu-Amara, and Abu-Amara [21] gave a secure message transmission
protocol for asynchronous networks. Kumar et al. [17] studied the secure message transmission problem
in the non-threshold setting. Goldreich, Goldwasser, and Linial [14], Franklin and Yung [13], Franklin
and Wright [12], and Wang and Desmedt [5] have studied secure communication and secure computation
in multi-recipient (multi-cast) models. Wang and Desmedt [6] studied secure computation in directed net-
works. Blaser et al. [3] characterize some of the functions that can be securely computed in non-2-connected
networks.

Our Results. Our main result is a more efficient protocol for “single-pair” reliable communication. The
round complexity of our protocol is (n/t)O(t), where n is the number of processors in the network and t is an
upper bound on the number of Byzantine processors in the network. Specifically, our protocol is polynomial
when the number of Byzantine processors is O(1), and for every t its round complexity is bounded by
2O(n). The improved protocol is obtained by analyzing the properties of the graphs that characterize reliable
communication. We exploit these properties to obtain a protocol with a better round complexity than the
protocol of [1]. It remains open if there is a protocol with polynomial number of rounds for t = ω(1).

Our improved protocol for reliable communication directly implies an improved protocol for reliable
and private communication, that is, a protocol in which a message is reliably transmitted and the adversary
learns nothing about it (other than the information that a message is being transmitted). Hence, we obtain a
protocol for reliable and private communication with round complexity (n/t)O(t).

We also give a simple characterization for reliable communication against one Byzantine processor. In
this case a simple necessary condition for reliable communication is that the communication graph is 2-
connected between a and b and the union of the communication and authentication graphs is 3-connected
between a and b. We show that this condition is “basically” sufficient. This characterization implies that
reliable communication is symmetric for t = 1. However, we show that the natural generalization of this

2

condition to t ≥ 2 is not sufficient. Finally, we show that reliable communication is not symmetric for t ≥ 2.
That is, there is a communication graph and an authentication graph for which reliable communication is
possible from a to b, but is not possible from b to a. This result is somewhat counter-intuitive as the edges
are bi-directional.

Organization. In Section 2, we describe our model, supply results from [1], and describe a simplified
protocol SIMPLESEND. In Section 3, we study the properties of the “effective communication graph.”
In Section 4 we use these properties to prove that Protocol SIMPLESEND is efficient. In Section 5 we
show how Protocol SIMPLESEND can be transformed to a protocol that achieves fault restricted reliable
communication, and in Section 6 we show how to use the fault restricted protocol to achieve private and
reliable communication. In Section 7 we discuss the symmetry/asymmetry of reliable communication.

2 Preliminaries

2.1 The Model

The network is modeled by an undirected graph GC = 〈V,EC〉, where V is the set of parties in the network
(i.e., |V | = n), and EC describes the communication channels. That is, there is an edge 〈u, v〉 in EC if and
only if there is a communication channel between u and v. We assume that these communication channels
are reliable: an adversary that does not control u or v (but might control all other vertices in the network)
cannot change or delete a message sent on the edge 〈u, v〉 or insert a message on the channel. Some pairs of
parties share authentication keys. Informally, an authentication scheme enables a sender and a receiver who
share a common key to exchange messages such that the receiver can verify that the message was sent by the
sender (see Section 2.2 for more details). We describe which pairs of parties share a common authentication
key by a graph GA = 〈V,EA〉, in which u and v share a common key, denoted by ku,v , if and only if
〈u, v〉 ∈ EA. These keys are chosen according to some known probability distribution, and every set of
vertices (processors) has no information on the keys of disjoint edges (pairs of processors), except for their
a-priori probability distribution.

We consider protocols for message transmission, in which a transmitter a ∈ V wants to transmit a
message M to a receiver b ∈ V . The system is synchronous. That is, a protocol proceeds in rounds; at
the beginning of each round each party v ∈ V sends messages to some of its neighbors in the graph GC .
The round complexity of a protocol is the number of rounds that have elapsed from its activation to its
termination. The message complexity of a protocol is the total number of bits in messages exchanged in a
round by the non-Byzantine processors, maximized over all of the rounds.

Assumptions. These messages get to the neighbors before the beginning of the next round. We assume
that all parties in the system know the topology of the graphs GC and GA. Furthermore, all the parties in
the system know in which round party a starts to transmit a message to party b.

Attack model. During the execution there might be Byzantine attacks (also known as “active attacks”).
An adversary, with an unlimited power, controls a subset T of the parties. The adversary knows the protocol,
the distribution under which the authentication keys where chosen, and the topology of the network (i.e.,
GC and GA). The adversary can choose T dynamically during the execution of the protocol. For every party
in T , the adversary knows all the messages received by that party, its random inputs, and its keys. From
the moment a party is included into T , the adversary determines the messages this party sends thereafter
(possibly deviating from the protocol specification in an arbitrary manner).

3

Definition 2.1 ((t, ε)-reliable communication) Let a, b ∈ V be a transmitter and a receiver. A message
transmission protocol from a to b is (t, ε)-reliable if for every message M transmitted from a to b by the
protocol, when the adversary can control any set T of at most t parties such that T ⊆ V \ {a, b}, the
probability that b accepts the message M is at least 1 − ε, where the probability is over the random inputs
of the parties, the distribution of the authentication keys, and the random input of the adversary.

In this paper we consider the problem of fault restricted reliable communication, which is a tool for
characterizing when t-reliable transmission between a given pair of parties is possible. In the fault restricted
version at least one of two given sets T0, T1, which are not necessarily disjoint, is guaranteed to contain
all of the faulty processors. We (miss-)use the term “Byzantine processor” by calling the processors from
T0 ∪ T1 Byzantine, although one of T0, T1 contains all of the Byzantine processors.

Definition 2.2 (({T0, T1} , ε)-reliable communication) Let a, b ∈ V be a transmitter and a receiver, and
let T0, T1 ⊆ V \ {a, b}. A message transmission protocol from a to b is ({T0, T1} , ε)-reliable if for every
message M transmitted from a to b by the protocol, when the processors controlled by the adversary are
contained in at least one of T0, T1, the probability that b accepts the message M is at least 1 − ε, where
the probability is over the random inputs of the parties, the distribution of the authentication keys, and the
random input of the adversary.

It was proved in [1] that (t, ε)-reliable communication is possible if ({T0, T1} , ε/
(n

t

)

)-reliable commu-
nication is possible for every pair T0, T1 of sets of size t. This (t,ε)-reliable protocol executes (in parallel)
the ({T0, T1} , ε/

(n
t

)

)-reliable protocol for every pair of sets of size t, and the receiver learns the message
that was sent from the sender by analyzing the results of these executions. In particular, if t is constant
and the ({T0, T1} , ε/

(n
t

)

)-reliable protocol is efficient for every T0, T1 of size at most t, then the resulting
(t, ε)-reliable protocol is efficient. See details in Section 6.

The reliability of a network is closely related to its connectivity. We consider vertex connectivity of
undirected graphs. Two paths from a to b are vertex disjoint if no vertices other than a and b appear on both
paths. A path P passes through a set T if there is a vertex u ∈ T in the path. Otherwise, we say that P
misses T . A graph H = 〈V,E〉 is (t, u, v)-connected if 〈u, v〉 ∈ E or if there are t vertex disjoint paths from
u to v. There is an efficient algorithm that checks whether a graph is (t, u, v)-connected (see, e.g., [10]).

2.2 Authentication Schemes

We briefly describe authentication schemes; the reader is referred to, e.g., [22] for more details. Let s be a
positive integer and K be a finite set, called the set of keys. An authentication scheme for messages in {0, 1}s

is a pair 〈AUTH, µ〉 for which AUTH : {0, 1}s×K → {0, 1}∗ is a function and µ is a probability distribution
on the set of keys K . An authentication scheme 〈AUTH, µ〉 can be used to send messages between two
parties, which we call Alice and Bob, in the following way: in the initialization stage, Alice and Bob are
given a shared key k ∈ K chosen from the probability distribution µ. To send an authenticated message M
to Bob, Alice computes α = AUTH(M,k), called tag, and sends the pair 〈M,α〉 to Bob. When Bob receives
a pair 〈M ′, α′〉, he verifies that α′ = AUTH(M ′, k), in which case Bob accepts the message M ′. Informally,
the scheme is ε-secure if the probability that an adversary can cause Bob to accept a message that was not
sent by Alice, is at most ε.

We use the notion of an `-adversary in the following definition. Let 〈AUTH, µ〉 be an authentication
scheme, and let k ∈ K be a key chosen from the probability distribution µ. An `-adversary is a computa-
tionally unlimited adversary who does not know k, but can get ` tags αi = AUTH(Mi, k) of messages of
its choice. The adversary can choose these messages dynamically. That is, its strategy has, without loss of
generality, ` stages; in the i-th stage the adversary chooses a message Mi which may depend on the previous

4

t0 t1

b

w

a

Graph0

t1

b

a

u vt0

3

2

1

Graph1

Figure 1: Examples of partially authenticated networks. The numbers indicate the levels of authentication
edges.

messages or tags and it gets the tag αi = AUTH(Mi, k). If an `-adversary can produces a pair 〈M,α〉 for
which M 6= Mi for every 0 ≤ i ≤ ` and α = AUTH(M,k), then the `-adversary breaks the scheme.

Definition 2.3 ((`, ε)-authentication scheme) The scheme 〈AUTH, µ〉 is an (`, ε)-authentication scheme if
any `-adversary cannot break the scheme with probability greater than ε, where the probability is over the
distribution of the authentication keys, and the random input of the adversary.

Authentication schemes based on hash functions were presented in [4, 25]. Efficient authentication
schemes were presented by Krawczyk [15, 16]. In these schemes, for every message of length s there is an
(`, ε)-authentication scheme with keys of length O(` · log 1

ε
+ log s) and tags of length O(log(1

ε
)).1 Note

that the length of the tag is independent of the length of the message. We use these schemes throughout the
paper.

Remark 2.4 Our definitions of reliable communication and authentication schemes consider an adversary
with unlimited computational ability. An alternative approach is to consider a polynomial-time adversary
and to require that it cannot break the protocol/scheme in polynomial time. Breaking our reliable protocol
implies breaking the underlying authentication scheme. Hence, if we use authentication schemes that are
secure against polynomial-time adversaries, then the resulting reliable communication protocol is computa-
tionally secure, that is, secure against polynomial-time adversaries.

2.3 Motivation

To motivate our protocol for fault restricted reliable communication, consider Graph0 described in Fig-
ure 1.2 In this graph a wants to send a message to b, and both know that exactly one of t0, t1 is Byzantine. If
a had shared an authentication key with b it could have used it to send the authenticated message along the
paths 〈a, t0, b〉 and 〈a, t1, b〉. The authenticated message would then arrive on at least one of these paths, and
b would verify its authenticity using the shared key. As we assume that the adversary cannot authenticate
messages sent by the honest parties, then b accepts the message sent by a.

However, a and b do not share an authentication key in Graph0. Thus, a sends the message M to b
on both 〈a, t0, b〉, 〈a, t1, b〉, and 〈a,w, b〉. Transmission on 〈a,w, b〉 is done as follows: a authenticates M

1If we settle for computational security, then the length of the key becomes shorter.
2Throughout this paper, communication channels are described by solid lines and authentication edges are described by dashed

lines.

5

using the shared key ka,w and sends the authenticated message to w on the path 〈a, t1, w〉. If w receives a
valid authenticated message M from a, it uses the shared key kw,b to authenticate M and the authenticated
message is sent to b on the path 〈w, t1, b〉. Otherwise, w sends nothing. If b receives a valid authenticated
message from w, it accepts it. Otherwise, b deduces that t1 intercepted the transmission on either 〈a, t1, w〉
or 〈w, t1, b〉, thus t0 is honest and therefore b accepts the message that arrived on 〈a, t0, b〉.

In Graph0 we have seen that for every authentication edge, a path in the communication graph was
used to send the authenticated message from one side of the edge to its other side. Let us see what hap-
pens if we apply this idea to Graph1, described in Figure 1. As before, a sends the message M on both
〈a, t0, b〉, 〈a, t1, b〉, and Pa,b

def
= 〈a, u, v, b〉. To send an authenticated message over the authentication edges

〈a, u〉, 〈v, b〉, we can use the paths 〈a, t0, u〉 and 〈v, t1, b〉 respectively. To send an authenticated message
over the authentication edge 〈u, v〉, we choose some path from u to v in the communication graph. However,
since any path from u to v in the communication graph passes through both t0 and t1, if v does not receive
a valid authenticated message from u, it does not know which of t0, t1 has intercepted this transmission.
Hence, b can not deduce which of t0, t1 is Byzantine, and it cannot choose the right message.

Our protocol follows the same idea used for Graph1 with the difference that for every authentication
edge 〈u, v〉, an authenticated message is sent from u to v by propagating the message over a path that has
Byzantine vertices from at most one set. This way, if the message arrives with invalid authentication, the
Byzantine vertex is detected.

We go back to Graph1, reconsidering the transmission of M on the path Pa,b. As before, to send
an authenticated message over the authentication edge 〈a, u〉 we use the path 〈a, t0, u〉 and u propagates
the message only if it is received with valid authentication. To send an authenticated message over the
authentication edge 〈u, v〉, we choose the path 〈u, t0, b, v〉 from u to v. This path contains an authentication
edge 〈b, v〉 and passes only through t0. To send an authenticated message from v to b and vice versa over
the authentication edge 〈v, b〉 we use the path 〈v, t1, b〉.

We next explain how b can accept the message sent by a. First, we temporarily assume that messages
sent on 〈v, b〉 are never intercepted by the adversary. Hence, if an authenticated message is sent from u to v
on the path 〈u, t0, b, v〉, either v receives an authenticated message from u or v learns that t0 is Byzantine.
What follows next is similar to the idea used in Graph0: If v receives a valid authenticated message from u
it propagates this message to b, otherwise v sends nothing. If b receives a valid authenticated message from
u, it accepts it. Otherwise, b deduces that t0 intercepted the transmission on either 〈a, t0, u〉 or 〈u, t0, b, v〉,
thus t1 is honest and therefore b accepts the message that arrived on 〈a, t1, b〉.

To avoid the assumption that authenticated messages sent from v to b and vice versa are never intercepted
by the adversary, an alert mechanism is used, which informs b whether the assumption was violated. If the
assumption is violated when an authenticated message is sent from v to b, then b can simply detect it by
verifying that the authenticated message arrived with invalid authentication. If the assumption is violated
when an authenticated message is sent from b to v, then v reports this violation to b by sending an alert
message on the edge 〈v, b〉. Hence, either the assumption holds throughout the entire execution of the
protocol, including the alert transmissions, or the assumption is violated in some point, possibly even during
the alert transmissions themselves. If the assumption holds, b applies the same analysis described before.
Otherwise, the assumption is violated and b deduces that t1 is Byzantine, thus t0 is honest and therefore b
accepts the message that arrived on 〈a, t0, b〉.

2.4 Characterizing Fault Restricted Reliable Communication

In this section we quote the definitions of G∗ and a confusing pair from [1]. These definitions characterize
when a can (T0, T1)-reliably communicate with b.

6

Definition 2.5 (Honest and Semi-Honest paths) Let H = 〈V,E〉 be a graph, u and v be some vertices in
V , and T0, T1 be subsets of V . A path 〈u, . . . , v〉 from u to v is honest if it misses T0 ∪T1. A path 〈u, . . . , v〉
from u to v is semi-honest if it misses at least one of the sets T0,T1.

To motivate the next definition consider an authentication edge 〈u, v〉 with a semi-honest path from u
to v in GC that passes through Ti, and a honest path from v to b in GC . When u wants to send a message
M to v, it authenticates M using the shared key ku,v and then sends the authenticated message along the
semi-honest path from u to v. If the message never arrives at v or if it arrives with invalid authentication,
then v immediately knows that the set Ti is controlled by the adversary. Furthermore, v can share this
information with b using the honest path from v to b. This makes 〈u, v〉 a “safe” edge. The following
definition formalizes what a “safe” edge is and how new “safe” edges can be added iteratively.

Definition 2.6 (The graph G∗) Let a, b ∈ V be the transmitter and the receiver, and T0, T1 ⊆ V \ {a, b}
be a pair of sets. Let GC = 〈V,EC〉 be the communication graph, and GA = 〈V,EA〉 be the authentication
graph. Define G0 = 〈V,E0〉 where E0 = EC , and for every j ≥ 1 define Gj = 〈V,Ej〉, where Ej is the
union of Ej−1 with the set of all authentication edges 〈u, v〉 ∈ EA for which all of the following properties
hold:

1. u, v 6∈ T0 ∪ T1, and

2. There is a semi-honest path from u to v in Gj−1 = 〈V,Ej−1〉, and

3. There is a honest path in Gj−1 from either u or v to b.

Finally, define G∗ = Gn.

Informally, the graph G∗ is the “effective” communication graph, as it contains exactly the edges that
can be used to reliably transmit a message from a to b. Property (2) ensures that v learns the Byzantine set
if an invalid message arrives from u, and Property (3) ensures that it can tell b about it. Also, as EA is finite,
there is a k for which Ek+i = Ek for every i ≥ 0. The graph G∗ is defined as Gn since it is proven in [1]
that En+i = En for all i ≥ 0.

Remark 2.7 Authenticating a message M over an authentication edge e = 〈u, v〉 ∈ EA is not necessary if
there is a honest path from u to v in GC . In such case, M is reliably transmitted over this path, and e can be
discarded. Hence, w.l.o.g., we assume throughout the paper that there are no such edges in EA.

We next define the notion of level of an edge, which is the stage in which it joins G∗. Formally, for an
edge e = 〈u, v〉 define level(e) def

= min {j|e ∈ Ej}. Note that e is a communication edge iff it has level 0.

The level of a path P is defined by level(P)
def
= max {level(e)|e ∈ P}. Obviously, a path has level 0 iff it is

a path in GC . Also, for every authentication edge e with level(e) = j, there is a honest path from either u
or v to b of level at most j − 1. Therefore, if there is a honest path Pv,b from v to b of level at most j − 1,
then the path Pu,b = 〈u, v〉, Pv,b (that is, Pu,b is the concatenation of the edge 〈u, v〉 and the path Pv,b) is an
honest pathfrom u to b of level at most j. We conclude that there is a honest path from both u and v to b of
level at most j.

We use Graph1 described in Figure 1 to demonstrate these definitions. In this graph we have 〈v, b〉 ∈ E1

since 〈v, t1, b〉 is a semi-honest path from v to b in G0. Hence, the level of 〈v, b〉 is 1. Next, 〈u, v〉 is added
to E2 because 〈u, t0, b, v〉 is a semi-honest path from u to b in G1 and 〈v, b〉 is a honest path from v to b in
G1. Hence, the level of 〈u, v〉 is 2. Finally, the edge 〈a, u〉 is added to E3 and its level is 3. Note that 〈a, u〉
can be added to G∗ only after 〈v, b〉 and 〈u, v〉 are added to G2 because we require that there is a honest path
from either a or u to b.

7

Definition 2.8 (Confusing Pair) A pair of sets (T0, T1) is an (a, b) confusing pair if T0, T1 ⊆ V \ {a, b},
and at least one of the following holds:

1. There is an index i ∈ {0, 1} such that every path from a to b in GC passes through Ti, or

2. Every path from a to b in G∗ passes through T0 ∪ T1.

If Property (1) of Definition 2.8 holds, the Byzantine parties can block the communication from a to b.
However, if it does not hold, then for every index i ∈ {0, 1} there is a path Pi from a to b in GC that misses
Ti. For every message M sent from a to b on both P0 and P1, even if b does not know which of T0, T1 is
Byzantine, it can guess i with probability 1

2 and accept the message M received on Pi. This implies that
if Property (1) does not hold then ({T0, T1} , ε)-reliable communication from a to b is possible for ε = 1

2 .
The next theorem states that fault restricted reliable communication from a to b for smaller values of ε is
possible only if neither properties hold.

Theorem 2.9 ([1]) For all T0, T1 ⊆ V \ {a, b} it holds that:

1. If (T0, T1) is not an (a, b) confusing pair, then ({T0, T1} , ε)-reliable communication from a to b is
possible for every ε > 0.

2. If (T0, T1) is an (a, b) confusing pair, then ({T0, T1} , ε)-reliable communication from a to b is not
possible for every 0 ≤ ε < 1

2 .

The following theorem connects fault restricted reliable communication with reliable communication.
As mentioned before, there is a transformation from [1] that executes the fault restricted protocol for every
pair of sets T0, T1 ⊆ V \ {a, b} and analyzes these executions to achieve reliable communication from a to
b (see details in Section 6). This transformation together with Theorem 2.9 give an exact characterization
when (t, ε)-reliable communication is possible:

Theorem 2.10 ([1]) There is a (t, ε)-reliable communication protocol from a to b for every ε > 0 if and
only if for every T0, T1 ⊆ V \ {a, b} of size at most t it holds that (T0, T1) is not an (a, b) confusing pair.

2.5 The Depth of Edges

Beimel and Franklin [1] used the level of edges in order to bound the round complexity of the protocol. The
contribution of this paper is a more efficient protocol, and it starts with introducing the notion of the depth
of an edge. We use the depth of edges in order to bound the round complexity of the protocol. The depth of
an edge is at most the level of an edge, but it can be significantly smaller. Moreover, the level of edges can
be as much as Ω(n) even for t = 1, whereas the depth on an edge can be at most t.

We intuitively explain the following definition of the notion of depth. We say that a level j + 1 is
significant if j is the smallest for which there is a semi-honest path from z to b in Gj for some z ∈ T0∆T1 =
(T0 ∪ T1) \ (T0 ∩ T1). The depth of an edge of level j is the number of levels j ′ ≤ j that are significant.

Definition 2.11 (Depth of an edge) The following inductive definition over the graphs Gj is of subsets of
T0∆T1. For G0 = GC let B0 = ∅ and for every j ≥ 1, define Bj to be the set of all z ∈ T0∆T1, for which
the following properties hold:

• For every 0 ≤ j ′ < j it holds that z /∈ Bj′ , and

• For the i ∈ {0, 1} such that z ∈ Ti there is a path from z to b in Gj−1 that misses Ti.
3

3Throughout this paper, i
def
= 1 − i for i ∈ {0, 1}.

8

We denote depth(j)
def
= |{j′|Bj′ 6= ∅, 1 ≤ j′ ≤ j)}|, and say that an edge e is of depth d if depth(level(e)) =

d.

Note that e is of depth 0 if and only if e ∈ GC if and only if e is of level 0. For a path P , we define
depth(P)

def
= max {depth(e)|e ∈ P}. Therefore, the depth of a path P is 0 iff P is in GC iff the level of P

is 0. The depth of the graph G∗ is the maximal depth over all the edges in G∗. For example, in Graph2
described in Figure 3 we have B1 = {t0, t1}. Hence, all of the authentication edges are of depth 1 and the
depth of Graph2 is 1. We next bound the depth of G∗.

Lemma 2.12 Let T0, T1 ⊆ V \ {a, b} such that |T1|, |T0| ≤ t. If there is no honest path from a to b in GC

and GC is (t + 1, a, b)-connected, then the depth of G∗ is at most t.

Proof: Let GC be the communication graph. Since GC is (t + 1, a, b)-connected, there are at least t + 1
disjoint paths from a to b in GC . Fix a set of such t + 1 paths. Since there is no honest path from a to b in
GC then none of these paths is honest and there is at least one Byzantine vertex on each one of them. We
consider the last Byzantine vertex on each of these paths. Since from each of these Byzantine vertices there
is a path to b that has no other Byzantine vertices on it then |B1| ≥ t + 1. Thus, there are at most other
2t− (t + 1) = t− 1 sets Bj for which Bj 6= ∅, and the depth of G∗ is as asserted.

2.6 Protocol SimpleSend

PROTOCOL SIMPLESEND(M,u, v)

PARAMETERS: M - message, u - source, v - target.

Choose a semi-honest path u = v0, v1, . . . , v`−1, v` = v from u to v in G∗.

FOR i = 0 TO `− 1 DO (∗ vi propagates the message to vi+1 ∗)

IF 〈vi, vi+1〉 ∈ EC THEN vi sends M to vi+1 on this edge

OTHERWISE, 〈vi, vi+1〉 ∈ EA:

vi executes SIMPLESEND(M,vi, vi+1)

ENDFOR.

Figure 2: A protocol for sending a message from u to v.

Protocol SIMPLESEND(M,u, v), described in Figure 2, transmits a message M on a path from u to v in
G∗. For every authentication edge 〈u′, v′〉 on the path from u to v it recursively calls SIMPLESEND(M,u′, v′)
to transmit the message on a path from u′ to v′. Protocol SIMPLESEND(M,u, v) does not achieve reliable
communication from u to v, it only chooses the paths on which the message is sent. It is a preliminary
version of Protocol SEND, discussed in Section 5. We will show that SEND is efficient if SIMPLESEND is
efficient, and then we will use Protocol SEND as a sub protocol of Protocol TRANSMIT, our protocol for
fault restricted reliable communication.

The description of Protocol SIMPLESEND from Figure 2 does not specify how the semi-honest path
is chosen. Such specification will be given in Section 4, after investigating the special structure of G∗ in

9

b

a u1 u2 u3 u4
1234

t0 t1 t2 t3

Vertex in T1

Vertex in T0

Graph2

Figure 3: An example demonstrating the choise of the paths in Protocol SIMPLESEND. The numbers indi-
cate the level of authentication edges.

Section 3. We next give intuition for possible implementations of Protocol SIMPLESEND and their analysis.
As observed in [1], since for every authentication edge 〈u, v〉 of level j in G∗ there is a semi-honest path
from u to v of level at most j−1, transmitting a message on this path can be done by at most n transmissions
on edges of level at most j − 1, yielding, by simple induction, a protocol with round complexity nO(n).

The first property that we introduce is of paths that end in b. We prove that for every authentication edge
〈u, v〉 there is a path from both u and v to b which has at most one edge of each level. Concatenating the
path from u to b with the path from b to v results in a semi-honest path from u to v that has at most two
edges of each level, yielding by simple induction a protocol with round complexity 2O(n).

Both approaches do not consider the impact of the number of Byzantine processors on the round com-
plexity of the protocol. The main contribution of this paper is the concept of depth. When we send a
message from u to b we choose a path from u to b in which the depths of authentication edges do not in-
crease. We prove an upper bound on the round complexity of sending a message over an authentication
edge that is exponential in the depth of the edge. Since the depth of an edge is at most t, the resulting
protocol has round complexity nO(t). We next present an example demonstrating the choise of the paths in
Protocol SIMPLESEND.

Example 2.13 Consider Graph2 described in Figure 3 in which T0 = {t0, t2} and T1 = {t1, t3}. We can
choose the paths on which we send messages in the following way: to send a message over the authentication
edge 〈a, u1〉, we use the semi-honest path 〈a, t0, b, t2, u2, u1〉. This requires a recursive send on the authen-
tication edge 〈u1, u2〉. To send a message over 〈u1, u2〉 we use the semi-honest path 〈u1, t1, b, t3, u3, u2〉
which requires a recursive send on the authentication edge 〈u2, u3〉. For the edge 〈u2, u3〉 we use the semi-
honest path 〈u2, t2, b, u4, u3〉 which requires a recursive send on the authentication edge 〈u3, u4〉. Finally, to
send a message on 〈u3, u4〉 we use the semi-honest path 〈u3, t3, b, u4〉 which does not require any recursive
calls.

Artificial example as it may seem, we show in Lemma 4.1 that every graph has the structure of Graph2
and then we analyze the transmission costs in this structure. We show that these costs are exponential in the
depth. The somewhat technical proofs in Section 3 provide us with the tools that enable the construction of
such structure.

The following lemma, which is used in Section 4, proves that the round complexity of transmitting M
from u to v is equal to the round complexity of transmitting M from v to u for all u, v ∈ V . This implies
that the round complexity of the protocol could be analyzed regardless of the direction upon which M is
sent.

10

Lemma 2.14 For all u, v ∈ V , if there is an implementation of the protocol SIMPLESEND(M,u, v) that
terminates after ` rounds, then there is an implementation of SIMPLESEND(M,v, u) that terminates after `
rounds.

Proof: The lemma is proved by induction on the depth of the recursive calls. The base case for paths
in GC is trivial. For the induction step, let Pu,v be the semi-honest path chosen in the execution of
SIMPLESEND(M,u, v) and note that the reverse path Pv,u is a semi-honest path as well. Using the in-
duction hypothesis for the edges 〈u′, v′〉 on the path Pu,v we conclude that SIMPLESEND(M,u′, v′) and
SIMPLESEND(M,v′, u′) require the same number of rounds to terminate. Since SIMPLESEND(M,u, v)
terminates after ` rounds, SIMPLESEND(M,v, u) terminates after ` rounds as well, and the induction fol-
lows.

The fact that Protocol SIMPLESEND is symmetric with respect to the sender and the receiver does not
imply that reliable communication is symmetric with respect to the sender and the receiver. The reason is
that the alert mechanism added in Protocol TRANSMIT is not symmetric.

3 Properties of the Graph G
∗

In this section we analyze the graph G∗. In particular, we show that paths which end in b have additional
properties. Our protocol utilizes this analysis to more efficiently transmit a message over an authentication
edge.

3.1 Monotonicity

The first property that we introduce is path monotonicity. Specifically, monotonous paths have only one
authentication edge of each level. As explained before, monotonous paths imply a protocol with round
complexity 2O(n).

Definition 3.1 (Monotonous Path) A path P is monotonous if for all authentication edges e1 and e2 in P ,
whenever e2 precedes e1 in the path P , then level(e2) is strictly larger then level(e1).

For example, the path 〈a, u1, u2, u3, u4, b〉 in Graph2 (described in Figure 3) is a monotonous path.
Note that P is monotonous implies that the first authentication edge e on P has the highest level over all of
the other edges in P . Hence, the level of P is determined by the level of this edge and vice versa. Also if P
is of level 0 (i.e., P is a path in GC), then P is monotonous.

Lemma 3.2 For every w ∈ V , if there is a honest path from w to b in G∗ of level j, then there is a
monotonous honest path from w to b of level at most j.

Proof: The lemma is proved by induction on j. The base case for j = 0 follows from the observation that
every path of level 0 is monotonous. For the induction step, assume that for every w ∈ V , if there is a honest
path from w to b of level at most j − 1, then there is a monotonous honest path from w to b of level at most
j − 1. Now, let Pw,b be a honest path from w to b of level j. Since the level of Pw,b is at least 1, there is at
least one authentication edge on Pw,b, and its level is at most j. Denote the first authentication edge on Pw,b

by e = 〈u, v〉. If there is a honest path Pu,b from u to b of level at most j − 1, then concatenating the prefix
〈w, . . . , u〉 of Pw,b with Pu,b yields a honest path 〈w, . . . , u〉, Pu,b from w to b of level at most j − 1, and by
the induction hypothesis there is a monotonous honest path from w to b of level at most j−1. Otherwise, by
Property (3) in the definition of the graph Gj , the level of e must be exactly j and there is a honest path from
v to b with level at most j − 1. By the induction hypothesis there is a monotonous honest path Pv,b from v

11

to b of level at most j − 1, which implies that the path 〈w, . . . , u〉, 〈u, v〉, Pv,b is a monotonous honest path
from v to b of level j, and the induction follows.

3.2 Left Edges and Left Paths

We further introduce the second property of paths that end in b, which we call left paths.

Definition 3.3 (Left and Right edges) An authentication edge e = 〈u, v〉 of level j is left if the following
properties hold:

1. There is a honest path from v to b of level at most j − 1.

2. There is a semi-honest path Pu,v from u to v of level at most j − 1, with at least one Byzantine vertex
on this path, where for the leftmost Byzantine vertex t on Pu,v , the prefix 〈u, . . . , t〉 of Pu,v is in GC .

An edge 〈u, v〉 is right iff 〈v, u〉 is left. A path P is left if every authentication edge on P is left.

For an illustration of a left edge see Figure 4 case (1). As another example, the authentication edge
〈a, u1〉 of level 4 in Graph2 described in Figure 3 is left since 〈a, t0, b, t2, u2, u1〉 is a semi-honest path
from a to u1 with t0 as its leftmost Byzantine vertex and 〈u1, u2, u3, u4, b〉 is a honest path from u1 to b of
level 3. Definition 2.6 of the graph G∗ implies that there must be a honest path from either u or v to b of level
at most j − 1, and a semi-honest path Pu,v from u to v of level at most j − 1. Property (2) in Definition 3.3
requires, in addition, that a Byzantine vertex must appear on Pu,v before any authentication edges that are
on Pu,v . Informally, this vertex provides a shortcut path to b that enables sending messages more efficiently.

Lemma 3.4 Every authentication edge in G∗ is either left or right.

Proof: Let e = 〈u, v〉 be an authentication edge of level j. We prove by induction on j, that e is either left
or right. For every edge of level 1 there is a semi-honest path from u to v in GC . Remark 2.7 implies that
there must be at least one Byzantine vertex on this path. If there is a honest path from v to b of level 0, then
e is left. Otherwise, there is a honest path from u to b of level 0 and e is right.

Assume that every authentication edge of level at most j − 1 is either left or right. The induction step
for j is as follows: Let e = 〈u, v〉 be an edge of level j. If there is a semi-honest path from u to v in GC ,
then similar arguments to those in the base case hold, and e is either left or right. Otherwise, let P be a
semi-honest path from u to v with at least one authentication edge, chosen with the minimal level among
the semi-honest paths from u to v. Denote the level of P by j ′, where 1 ≤ j ′ ≤ j − 1, and let e1 = 〈u1, v1〉
and e2 = 〈u2, v2〉 be the leftmost and rightmost authentication edges on P , respectively (e1 and e2 can be
the same edge). Denote Pu1,b and Pv2,b to be honest minimal level paths from u1 and v2, respectively, to

b. Define Pu,v
def
= 〈u, . . . , u1〉, Pu1,b, Pb,v2

, 〈v2, . . . , v〉. Note that Pu,v is a semi-honest path from u to v of
level at most j ′ that misses Ti for some i ∈ {0, 1}. Since Pu1,b, Pb,v2

is a honest path, any Byzantine vertex
on Pu,v, if there is any, may appear only on 〈u, . . . , u1〉 or 〈v2, . . . , v〉. There are three cases to consider
(see Figure 4), and in each case we construct the paths proving that e is either left or right.

1. There are vertices t1, t2 ∈ Ti such that t1 is a Byzantine vertex in 〈u, . . . , u1〉, and t2 is a Byzantine
vertex in 〈v2, . . . , v〉: Note that there is w ∈ {u, v} for which there is a honest path from w to b of
level at most j − 1. If w = u then e is right. Otherwise, w = v and e is left. See Figure 4 case (1).

12

Pv,b

u v

u1

v1 u2

v2

b

t1 t2

(1)

Pv2,v

u v

u1

v1 u2

v2

b

(2)

t1

u v

v1 u2

v2

Pv2,v

b

(3)

t1

u1

Figure 4: The three cases in the proof of Lemma 3.4.

2. There is a vertex t1 ∈ Ti such that t1 is a Byzantine vertex in 〈u, . . . , u1〉, and 〈v2, . . . , v〉 misses
T0 ∪ T1: In this case the prefix 〈u, . . . , t1〉 of Pu,v is in GC . Also, the honest paths 〈v, . . . , v2〉 and
Pv2 ,b make a honest path 〈v, . . . , v2〉, Pv2 ,b from v to b of level at most j − 1, which implies that e
is left. See Figure 4 case (2). If there is a Byzantine vertex in 〈v2, . . . , v〉, and 〈u, . . . , u1〉 misses
T0 ∪ T1, then by symmetric arguments e is right.

3. Both 〈u, . . . , u1〉, and 〈v2, . . . , v〉 miss T0 ∪ T1: By the induction hypothesis, each of e1 and e2 is
either left or right. If e1 is right and e2 is left, then, by Definition 3.3, the level of the path Pu1,b, Pb,v2

is at most j ′ − 1. See Figure 5. This implies that Pu,v is a semi-honest path from u to v of level at
most j′ − 1, contradiction to the choice of P with the minimal level. Hence, either e1 is left or e2 is
right. If e1 is left, then by the induction hypothesis there is a semi-honest path Pu1,v1

from u1 to v1

of level at most j ′ − 1, and there is a prefix 〈u1, . . . , t1〉 of Pu1,v1
where t1 ∈ T0∆T1 is the leftmost

Byzantine on Pu1,v1
. Note that 〈u1, . . . , t1〉 is a path in GC . We construct a semi-honest path P ′ from

Pu,v by replacing e1 with Pu1,v1
. See Figure 4 case (3). There is a prefix of P′ in which t1 is the

leftmost Byzantine. Moreover, the level of P ′ is at most j ′. Finally, since 〈v, . . . , v2〉, Pv2 ,b is a honest
path from v to b of level at most j − 1, then e is left. If e2 is right, then by symmetric arguments e is
right.

u v

u1

v1 u2

v2

Pu1,b Pv2,b

b

Figure 5: Case 3 in the proof of Lemma 3.4.

Thus, the induction follows.

The next lemma combines the property of monotonicity with the property of left paths. Our protocol
uses both the monotonicity of paths and their left structure to transmit messages efficiently.

13

Lemma 3.5 For every left authentication edge 〈u, v〉 of level j, there is a left, monotonous, honest path
from v to b of level at most j − 1.

Proof: We prove the lemma by induction on j. Let e = 〈u, v〉 be a left authentication edge of level j ≥ 1.
For the base case of the induction, the level of e is 1 and e is left. By Definition 3.3 there is a honest path
from v to b of level 0. Since this path is in GC it is left and monotonous as well.

Assume that the induction hypothesis holds for every authentication edge e of level at most j. For the
induction step, let e = 〈u, v〉 be a left authentication edge of level j + 1. By Definition 3.3 there is a honest
path from v to b of level at most j. Therefore, there is a minimal j ′ ≤ j for which there is a honest path
from v to b of level j ′. By Lemma 3.2, there is a monotonous, honest path Pv,b from v to b of level j ′. We
show that there is a left, monotonous, honest path from v to b of level j ′. If j′ = 0, then, by Definitions 3.3
and 3.1, Pv,b is a left, monotonous, honest path from v to b. Otherwise, there is a leftmost authentication
edge 〈u′, v′〉 on Pv,b of level at most j ′, and by Lemma 3.4, the edge 〈u′, v′〉 is either left or right. If 〈u′, v′〉
is right then there is a honest path Pu′,b from u′ to b of level at most j ′ − 1, and 〈v, . . . , u′〉, Pu′ ,b is a honest
path from v to b of level at most j ′ − 1, contradiction to the choice of Pv,b with a minimal level. Therefore,
〈u′, v′〉 is a left edge and level(〈u′, v′〉) ≤ j′. By the induction hypothesis, there is a left, monotonous,
honest path Pv′ ,b from v′ to b of level at most level(〈u′, v′〉) − 1. Therefore, 〈v, . . . , u′〉, 〈u′, v′〉, Pv′ ,b is a
left, monotonous, honest path from v to b of level at most j, as asserted.

In the next lemma we make the first link between depth and left edges.

Lemma 3.6 For every left authentication edge e = 〈u, v〉 of depth d there is a semi-honest path from u to b
of depth ≤ d− 1.

Proof: Let e = 〈u, v〉 be a left authentication edge of level j and depth d. Since e is left, there is a semi-
honest path Pu,v from u to v of level at most j − 1 and there is a honest path Pv,b from v to b of level at
most j − 1. Hence, the path Pu,v, Pv,b is a semi-honest path from u to b of level at most j − 1 and there is a
leftmost Byzantine vertex z ∈ Ti on this path for some i ∈ {0, 1} and z /∈ Ti. This implies that there is also
a semi-honest path from z to b of level at most j − 1 and since z /∈ T0 ∩ T1 then z ∈ Bk for some k ≤ j.

Note that the prefix 〈u, . . . , z〉 of Pu,v misses Ti. Since z ∈ Bk, there is a semi-honest path Pz,b from z
to b in Gk−1 that misses Ti. Also, Bk 6= ∅ implies that depth(k−1) = depth(k)−1 ≤ depth(j)−1 = d−1,
and we conclude that 〈u, . . . , z〉, Pz,b is a semi-honest path from u to b of depth at most d− 1.

4 Efficient Implementation of Protocol SimpleSend

In this section we utilize the properties of G∗ from Section 3 to describe an efficient implementation of
Protocol SIMPLESEND. This implementation uses paths of depth d − 1 to send messages over edges of
depth d, which motivates us to express transmission costs in terms of depth. Moreover, the depth of edges
in G∗ is at most t, and we prove that the running time of Protocol SIMPLESEND is nO(t), which implies that
the protocol is polynomial whenever the number of Byzantine processors is constant.

To specify an implementation for Protocol SIMPLESEND we specify how the semi-honest path is chosen
in each recursive call. That is, we describe how a message is sent over an authentication edge. This imple-
mentation completes the specification of the protocol and it is known to all of the processors in the network.
Hence, every processor in the network can execute its part of the protocol.

The following lemma proves an upper bound on the number of rounds required to send a message over
an authentication edge of depth d + 1 by describing an implementation that achieves this bound. During the
transmission of a message over an authentication edge of depth d+1, this implementation sends the message

14

over paths of depth d, which may be honest or semi-honest. The notation cost(d) denotes the number of
rounds required to send a message over a path of depth at most d in this implementation, taken as the
maximal over the paths of depth at most d that are used by the protocol in this implementation. Since a path
of depth 0 can have at most n edges, all of which are communication edges, we conclude that cost(0) ≤ n.
Our next lemma is used to upper bound cost(d) as a function of cost(d− 1).

Lemma 4.1 If 〈u, v〉 is a left authentication edge of depth d and Pv,b is a left, monotonous, honest path from
v to b with m authentication edges of depth d (and any number of authentication edges of a lower depth),
then there is an implementation of SIMPLESEND(M,u, v) that terminates after at most 2(m + 1) · cost(d−
1) + mn rounds.

Proof: Since 〈u, v〉 is left, then by Lemma 3.6 there is a semi-honest path Pu,b from u to b of depth at most
d− 1. By the definition of cost(d− 1), a message M sent from u to b by SIMPLESEND(M,u, b) arrives at b
after at most cost(d−1) rounds. By induction on m, which is the number of authentication edges of depth d
on Pv,b, we prove that SIMPLESEND(M,u, v) terminates after at most 2(m+1)·cost(d−1)+mn rounds. For
the base case, since m = 0 then the honest path Pv,b is of depth at most d− 1. Lemma 2.14 guarantees that
SIMPLESEND(M, b, v) requires the same number of rounds as SIMPLESEND(M,v, b). Hence, a message
M sent from b to v by SIMPLESEND(M, b, v) arrives at v after at most cost(d − 1) rounds. Therefore, the
path Pu,b, Pb,v is a semi-honest path of depth at most d−1, and a message M sent by SIMPLESEND(M,u, v)
from u to v through b, arrives at v after at most 2 · cost(d− 1) rounds.

Assume the induction hypothesis for every m′ ≤ m. For the induction step, let 〈u, v〉 be a left edge of
depth d and fix Pv,b to be a left, monotonous, honest path from v to b with m + 1 authentication edges of

depth d. Denote Pv,b
def
= Pv,vm+1

, Pvm+1 ,b where Pv,vm+1
= 〈v ; u1, v1 ; u2, v2, . . . , um+1, vm+1〉 is a

prefix of Pv,b with m+1 authentication edges e` = 〈u`, v`〉 for every 1 ≤ ` ≤ m+1 (the notation ; stands
for a honest path in GC), and Pvm+1,b is a suffix of Pv,b of depth at most d− 1.

Consider the path Pv,vm+1
. This path is also a left, monotonous, honest path from v to vm+1. By

Lemma 3.6 there is a semi-honest path Pu`,b from u` to b of depth at most d − 1 for every 1 ≤ ` ≤ m + 1

(see Figure 6). This implies that there is a semi-honest path Pb,v`

def
= Pb,u`+1

, 〈u`+1 ; v`〉 from b to v` of
depth at most d − 1 for every 1 ≤ ` ≤ m, where Pb,u`+1

is the reverse path of Pu`+1,b. Let Ti be the set
missed by Pu,b. There are two cases:

u v

b

um′
−1 vm′

−1 um′ um+1 vm+1v1u1

Pu,b Pu1,b
Pu

m′
−1

,b Pu
m′ ,b Pum+1,b Pvm+1,b

Semi-honest path of depth at most d − 1.

Honest path of depth at most d − 1.

Authentication edge.

Figure 6: The paths in the induction step of the proof of Lemma 4.1.

15

First Case. For every 1 ≤ ` ≤ m + 1 the semi-honest path Pu`,b from u` to b misses Ti : For every
1 ≤ ` ≤ m consider the path Pu`,b, Pb,v`

. This is a semi-honest path from u` to v` of level at most d − 1.
For the edge em+1, recall that Pvm+1 ,b is a honest path from vm+1 to b of depth at most d − 1. Hence,
there is a semi-honest path Pum+1,b, Pb,vm+1

from um+1 to vm+1 of depth at most d − 1. This implies that
SIMPLESEND(M,u`, v`) terminates after at most 2 · cost(d− 1) rounds for every 1 ≤ ` ≤ m + 1.

Consider the semi-honest path from u to v:

Pu,b, Pb,vm+1
, 〈vm+1, um+1, . . . , v1, u1 ; v〉.

A message M sent from u on Pu,b, Pb,vm+1
arrives at vm+1 after at most 2 · cost(d− 1) rounds. Since there

are at most n communication edges on Pv,vm+1
, each with transmission cost of 1 round, a message M sent

from u to v by SIMPLESEND(M,u, v) arrives at v after at most 2 ·cost(d−1)+(m+1) ·2 ·cost(d−1)+n =
2(m + 2) · cost(d− 1) + n rounds.

Second Case. There is an `, where 1 ≤ ` ≤ m + 1, for which the path Pu`,b passes through Ti : Let m′

be the minimal for which the semi-honest path Pu
m′ ,b passes through Ti. Since the semi-honest path Pu

m′ ,b

passes through Ti, it misses Ti. Also, by the choice of m′ the path Pu`,b misses Ti for every 1 ≤ ` ≤ m′−1.
As in the previous case, Pb,v`

= Pb,u`+1
, 〈u`+1 ; v`〉 is a path from b to v` that misses Ti for every

1 ≤ ` ≤ m′−2. Therefore, the path Pu`,b, Pb,v`
is a semi-honest path from u` to v` of level at most d−1 for

every 1 ≤ ` ≤ m′ − 2, which implies that SIMPLESEND(M,u`, v`) terminates after at most 2 · cost(d− 1)
rounds for every 1 ≤ ` ≤ m′ − 2.

Consider the semi-honest path from u to v:

Pu,b, Pb,u
m′

, 〈um′ ; vm′
−1, um′

−1, . . . , v1, u1 ; v〉.

By the induction hypothesis for the edge 〈um′
−1, vm′

−1〉 it holds that SIMPLESEND(M,um′
−1, vm′

−1)
terminates after at most 2 · [(m + 1) − m′ + 1] · cost(d − 1) + [(m + 1) − m′]n rounds. Since there
are at most n communication edges on Pv,u

m′
−1

, each with transmission cost of 1 round, we conclude that
a message M sent from u by SIMPLESEND(M,u, v) arrives at v after at most 2 · cost(d − 1) + (m ′ − 2) ·
2 · cost(d− 1) + 2[m−m′ + 2] · cost(d− 1) + [m + 1−m′]n + n ≤ 2(m + 2) · cost(d− 1) + (m + 1)n
rounds, and the induction follows.

We further describe the implementation of Protocol SIMPLESEND from Lemma 4.1 to specify how a
message is sent on a path of depth d. Although this path can be either honest or semi-honest, we treat it as
a semi-honest path, because a honest path is a semi-honest path. The following lemma describes how these
paths are chosen and upper bounds cost(d) for our implementation. Towards this goal, define δ0

def
= 0 and

δd
def
= | {j|depth(j) = d} | for every d ≥ 1. That is, δd is the number of levels in which the depth of edges is

d. Clearly, δ0 + . . . + δd ≤ n.

Lemma 4.2 There is an implementation of Protocol SIMPLESEND for which cost(d) ≤ (d+1)·n
∏d

k=0(δk+
1)2 for every depth d ≥ 0.

Proof: We prove the upper bound by induction on d. For the base case, any path of depth 0 is a path in GC ,
which implies that cost(0) ≤ n and the inequality holds. Assume the induction hypothesis for every d ′ < d.
For the induction step, let P be a semi-honest path from w to b, chosen with a minimal level over these
paths, and denote depth(P) = d and level(P) = j. Since d ≥ 1 there is at least one authentication edge on
P . Let 〈u, v〉 be the leftmost authentication edge on P , and let 〈w, . . . , u〉 be a prefix of P in GC . If 〈u, v〉
is right, then there is a honest path P ′ from u to b of level at most j− 1, which implies that 〈w, . . . , u〉, P ′ is
a semi-honest path from w to b of level at most j − 1, contradiction to the choice of P with a minimal level.

16

Therefore, 〈u, v〉 is left, and by Lemma 3.5 we choose Pv,b to be a left, monotonous, honest path from v to
b of depth d and level at most j − 1.

Consider the semi-honest path Pw,b
def
= 〈w, . . . , u〉, 〈u, v〉, Pv,b . Note that the path 〈u, v〉, Pv,b is a left,

monotonous, honest path from u to b of depth at most d. By the definition of δd and the monotonicity of
〈u, v〉, Pv,b there are m ≤ δd authentication edges of level d on 〈u, v〉, Pv,b . Let 〈um, vm〉 = 〈u, v〉 and

define Pu,b
def
= 〈um, vm, . . . , u1, v1〉, Pv1 ,b where e` = 〈u`, v`〉 is an authentication edge of depth d for every

1 ≤ ` ≤ m, and Pv1,b is a path from v1 to b of depth at most d− 1.
By the definition of cost(d − 1), a message M sent from v1 to b by SIMPLESEND(M,v1, b) arrives

at b after at most cost(d − 1) rounds. In addition, by Lemma 4.1 a message M sent from u` to v` by
SIMPLESEND(M,u`, v`) arrives at v` after at most 2 · ` · cost(d−1)+(`−1)n rounds for every m ≥ ` ≥ 1.
Finally, since there are at most n communication edges on Pw,v1

we conclude that a message M sent from
w by SIMPLESEND(M,w, b) arrives at b after at most

∑m
`=1[2 · ` · cost(d− 1)+ (`− 1)n]+ cost(d− 1)+n

rounds, where m ≤ δd. Thus:

cost(d) ≤
m

∑

`=1

[2 · ` · cost(d− 1) + (`− 1)n] + cost(d− 1) + n

≤
δd
∑

`=1

`[2 · cost(d− 1) + n] + cost(d− 1) + n

≤

(

(δd + 1)δd

2
+ 1

)

[2 · cost(d− 1) + n]

≤ (δd + 1)2[d · n
d−1
∏

k=0

(δk + 1)2 + n] (1)

≤ (d + 1) · n
d

∏

k=0

(δk + 1)2.

The inequality in (1) is implied by the induction hypothesis.

We have specified how Protocol SIMPLESEND sends a message over an authentication edge, and how
honest and semi-honest paths are chosen. This implementation is well defined, which implies that cost(d)
is well defined. We use these results to upper bound the round complexity of a message transmission from
a to b on a honest path.

Lemma 4.3 There is an implementation of SIMPLESEND(M,a, b) that terminates after at most n2 ·
(

2n
t

)2t

rounds.

Proof: If there is a honest path from a to b in GC then SIMPLESEND(M,a, b) terminates after at most
n rounds. Otherwise, by Lemma 2.12 the depth of G∗ is at most t, which implies by Lemma 4.2 that
there is an implementation of SIMPLESEND(M,a, b) that transmits M over a honest path from a to b and
terminates after at most cost(t) ≤ (t + 1) · n

∏t
k=0(δk + 1)2 rounds. Let j be the highest level of an edge

in G∗, and notice that δ0 + δ1 + . . . + δt = j and that j ≤ n. Also,
∏t

k=0(δk + 1)2 is maximal when
δ1 = δ2 = . . . = δt = j

t
≤ n

t
. Finally, since t ≤ n− 2, we conclude that:

cost(t) ≤ (t + 1)n
t

∏

k=0

(δk + 1)2 ≤ n2
t

∏

k=1

(

n

t
+ 1

)2

= n2
(

n + t

t

)2t

≤ n2
(

2n

t

)2t

.

17

5 Fault Restricted Reliable Communication

In this section we present Protocol SEND, which is an extended version of Protocol SIMPLESEND, and
we explain why the round complexity of the two protocols equals. We also introduce Protocol TRANSMIT

which solves the problem of fault restricted reliable communication by executing Protocol SEND, and we
prove that its round complexity is at most n + 1 times the round complexity of Protocol SEND. Protocol
TRANSMIT borrows ideas from Protocol TRANSMIT of [1]; however, our protocol is simpler and has lower
message complexity. In Section 6 we use this protocol to obtain a protocol that solves the problem of
(t, ε)-reliable communication.

We first describe Protocol SEND and then we explain how Protocol TRANSMIT uses it to achieve fault
restricted reliable communication. Protocol SEND(M,P), described in Figure 7, transmits a message M
on a path P . The message M is propagated in the same fashion as in Protocol SIMPLESEND: if 〈u, v〉 is
a communication edge, then u simply propagates M to v. Otherwise, 〈u, v〉 is an authentication edge, u
uses the shared key ku,v to authenticate M , and the authenticated message is sent to v by calling SEND

recursively. If v does not receive a valid authenticated message from u, it recalls this fact by setting a flag.
Protocol SEND uses fixed paths that are known to all of the processors in the network. That is, these

paths are explicitly specified by Protocol SEND. Let 〈u, v〉 be an authentication edge of level j. To send a
message from u to v the protocol fixes a semi-honest path PATH(u, v) from u to v. The only requirement
on PATH(u, v) is that its level be at most j − 1. For every w ∈ V with a honest path from w to b, to send a
message from w to b the protocol fixes a honest path PATH TO b(w) from w to b. The only requirement on
PATH TO b(w) is that it is a monotonous honest path, whose level is minimal over these paths. Under these
requirements, the correctness of the protocol is proved.

By Lemma 4.1 and Lemma 4.2, paths chosen by Protocol SIMPLESEND satisfy the requirements for the
paths fixed by Protocol SEND. Authenticating messages and maintaining a flag do not change the round
complexity of Protocol SEND with respect to Protocol SIMPLESEND. Hence, the round complexity of
Protocol SEND equals to the round complexity of Protocol SIMPLESEND.

Protocol TRANSMIT(M,a, b), described in Figure 8, reliably transmits a message M from a to b. This
protocol proceeds in cycles: in the first cycle M is sent from a to b on three paths: P0, P1, and P . The paths
P0 and P1 are paths from a to b in the communication graph that miss T0 and T1 respectively, and M is
propagated on these paths from a to b. The path P is a path in G∗ that misses T0 ∪ T1 and M is propagated
from a to b on P by executing the recursive Protocol SEND(M ,P). Once this execution terminates, if
M arrived on P then b accepts it. Otherwise, we prove in Lemma 5.2 that b can analyze the execution
of TRANSMIT(M,a, b) and determine an index i ∈ {0, 1} for which Ti is Byzantine. This enables b to
conclude that Pi is Byzantine free, therefore accepting the message arrived on Pi.

In the first cycle of Protocol TRANSMIT, Protocol SEND(M,P) is executed and then alert calls are
invoked. These calls, executed in parallel in the second cycle, send the flag value to b. Since alert calls are
recursive calls to Protocol SEND they may trigger additional cycle. However, if (and only if) all of the alert
calls that are executed in a cycle send messages over paths in GC , then no additional cycle of alert calls is
executed and Protocol TRANSMIT terminates. In Lemma 5.1 we show that such cycle exists.

The following lemma proves that the round complexity of SEND(M,PATH TO b(a)) is at most n + 1
times the round complexity of SIMPLESEND(M,a, b).

Lemma 5.1 If there is an implementation of Protocol SIMPLESEND(M,w, b) that terminates after at most
τ rounds for every w ∈ V , then there is an implementation of Protocol TRANSMIT(M,w, b) that terminates
after at most τ · (n + 1) rounds for every w ∈ V .

Proof: In every cycle of Protocol TRANSMIT there are parallel executions of Protocol SEND. If an authen-
tication edge participates in an execution of Protocol SEND, then alert calls are invoked and another cycle is

18

Protocol Send(M ,P)

PARAMETERS:

M - a message,

P = v0, v1, . . . , v` - a path in G∗.

FOR i = 0 TO `− 1 DO (∗M is propagated on P ∗)

Let M ′ be the message received at vi. If no message is received then M ′ ← “error”.

IF 〈vi, vi+1〉 ∈ EC THEN vi propagates M ′ to vi+1 on this edge.

OTHERWISE, 〈vi, vi+1〉 ∈ EA:

1. vi executes SEND(〈M ′, AUTH(M ′, kvi,vi+1
)〉, PATH(vi, vi+1)).

2. IF vi+1 received 〈M̂ , α̂〉 such that α̂ 6= AUTH(M̂, kvi,vi+1
)

THEN vi+1 sets FLAGvi,vi+1
← FALSE, and M ← “error”.

ENDFOR.

Figure 7: A sub-protocol for sending a message on a path in G∗.

Protocol Transmit(M ,a,b)

PARAMETERS: M - a message, a - sender, and b - receiver.

INITIALIZATION: cycle← 0, and for every u, v ∈ V set FLAGu,v ← TRUE.

Send M from a to b on a path in GC that misses T0

Send M from a to b on a path in GC that misses T1

Execute SEND(M, PATH TO b(a))

REPEAT

cycle← cycle + 1

Let R be the set of all authentication edges 〈u, v〉 for which u has sent an authenticated
message to v in the previous cycle.

FOR EACH 〈u, v〉 ∈ R DO (∗ In parallel ∗)

SEND(〈cycle, u, v,FLAGu,v〉,PATH TO b(v)) (∗ This is an alert call ∗)

UNLESS R = ∅

Figure 8: A protocol for reliable message transmission from a to b.

19

executed.
To show that the execution of TRANSMIT(M,w, b) terminates after at most n + 1 cycles, we show that

sending a message to b on a path of level j using Protocol SEND may only trigger executions of Protocol
SEND in which alerts are sent to b on paths of level at most j − 1. Since the level of the paths on which
alerts are transmitted decreases from one cycle to another, then a cycle is eventually reached in which no
authentication edges are used, no alerts are invoked, hence Protocol TRANSMIT terminates.

Consider the execution of SEND(M,P) and let j = level(P). We show that level(PATH TO b(z)) < j
for any execution of SEND(M, PATH TO b(z)) in the next cycle. For every authentication edge 〈u, v〉 of
level i that participates in SEND(M,P) the protocol fixes the path PATH(u, v) from u to v of level at most
i − 1 to propagate the message from u to v. Moreover, by the construction of G∗ there is a honest path of
level at most i from both u and v to b. From Lemma 3.2 it follows that for every authentication edge 〈u, v〉
of level i there is a monotonous honest path from w to b of level at most i. Hence, authentication edges of
level i ≤ j − 1 that participate in the execution of SEND(M,P) will trigger alert calls on paths of level at
most j − 1. Moreover, since P is a monotonous path, only the first edge on this path, denoted 〈u1, v1〉, is
of level j, and the suffix of P is a honest monotonous path from v1 to b of level at most j − 1. This implies
that the alert call invoked by v1 is on a path of level at most j − 1. We conclude that authentication edges
that participate in the transmission of a message from w to b on a path of level j, will trigger alert calls on
paths of level at most j − 1.

Therefore, if level(PATH TO b(w)) = j, then in cycle 1 of TRANSMIT(M,w, b) there are alert transmis-
sions on paths of level at most j− 1. Repeating this argument we conclude that in cycle at most j +1, there
are alert transmissions on paths of level 0. That is, alert messages are sent to b on paths in the communica-
tion graph, which implies that no authentication edges participate in this cycle. Since there are at most n+1
cycles, each requires at most τ rounds to terminate, then Protocol TRANSMIT(M,w, b) terminates after at
most τ · (n + 1) rounds.

The next lemma is used to prove the correctness of the protocol.

Lemma 5.2 For every w ∈ V with a honest path from vertex w to vertex b and for every message M , if
TRANSMIT(M,w, b) is executed and the adversary has not authenticated any message that was accepted
by the honest parties, then either b accepts M or b learns a set that contains all Byzantine vertices.

Proof: Let P be the honest path from w to b fixed by Protocol TRANSMIT. Since P is Byzantine free, if P is
in GC then clearly b accepts M . Otherwise, authentication edges on P trigger a second cycle in which alert
calls are transmitted. In particular, for every authentication edge 〈u, v〉 on P , the message M is propagated
by v if and only if it arrives with valid authentication. Otherwise, the “error” message is propagated. Note
that it is impossible that v accepts a message that was not sent by u because we assume that the adversary
has not authenticated any message during the execution. Hence, if b accepts a message M ′ 6= “error”, then
it must be that M = M ′. If b receives “error”, it infers that there is at least one authentication edge that
participated in the protocol, for which a message sent from one end of this edge was not received with valid
authentication on its other end. The rest of the proof shows that b can find an authentication edge for which
it can determine a set that contains all Byzantine vertices.

The execution of TRANSMIT(M,w, b) proceeds in cycles. Alert transmissions are invoked in the end
of each cycle, and executed in the next cycle. For every FLAGu,v sent from v to b, since the alert message
contains the cycle number, u, and v, then no two alert messages are identical, and as before, if b receives the
message FLAG′

u,v 6= “error”, then it must be that FLAG′

u,v = FLAGu,v . We say that a cycle is successful
if, in the end of the cycle, b receives all of the messages that were sent to it during the cycle. Since messages
in the last cycle are sent over honest paths in GC then b receives all of these messages which implies that
there is at least one successful cycle.

20

Consider the first successful cycle and denote it by C . This cycle can not be the first because M′ =
“error”. Also, if all of the values received by b in this cycle are true, then v has received a valid authenticated
message from u for every authentication edge 〈u, v〉 that participated in the previous cycle. This implies the
the cycle preceding C is successful, contradiction to the choice of C . Therefore, b receives all of the flags
that are sent to it in C and at least one of these flags has a false value.

Let 〈u, v〉 be an authentication edge that participates in cycle C for which b receives FLAGu,v =
FALSE, chosen with the minimal level over these edges. This implies that there was a round in which v did
not receive a valid authenticated message from u. Recall that to send a message from u to v the protocol fixes
a semi-honest path PATH(u, v) from u to v, which is known to all of the processors. By the choice of C , when
this cycle ends b would have received FLAGu′,v′ for every authentication edge 〈u′, v′〉 on the semi-honest
path PATH(u, v). Moreover, for every authentication edge 〈u′, v′〉 on the semi-honest path PATH(u, v), since
level(〈u′, v′〉) < level(〈u, v〉), then by the choice of 〈u, v〉 it must be that FLAGu′,v′ = TRUE. Since
b knows that v did not receive a message with valid authentication from u, and that u ′ received a valid
authenticated message from v′ for every authentication edge 〈u′, v′〉 on the semi-honest path PATH(u, v),
then b can conclude that there is a Byzantine processor on PATH(u, v). Finally, PATH(u, v) is a semi-honest
path and b knows the unique index i ∈ {0, 1} for which PATH(u, v) passes through Ti, which implies that b
can detect that Ti is Byzantine.

The next theorem proves that Protocol Transmit achieves ({T0, T1} , ε)-reliable communication from
a to b if authentication edges that participate in its execution use an (`, ε

`·n2)-authentication scheme, for

` = 2n3 ·
(

2n
t

)2t
. By [16], this could be achieved if authentication keys of length O(`(n+log 1

ε
)+log |M |)

are used.

Theorem 5.3 If (T0, T1) is not an (a, b) confusing pair, then for every ε > 0 Protocol TRANSMIT(M,a, b)

is a ({T0, T1} , ε)-reliable protocol which terminates after at most O(n3 ·
(

2n
t

)2t
) rounds provided that

authentication edges that participate in the execution of the protocol use an (`, ε
`·n2)-authentication scheme,

where ` = 2n3 ·
(

2n
t

)2t
.

Proof: Since (T0, T1) is not an (a, b) confusing pair then for every i ∈ {0, 1} there is a semi-honest path
Pi from a to b in GC that misses Ti, and there is a honest path from a to b in G∗. Hence, the execution of
Protocol Transmit is well defined. Applying Lemma 5.1 and Lemma 4.3, this protocol terminates after at

most 2n3 ·
(

2n
t

)2t
rounds.

If the adversary has not authenticated any message that was accepted by the honest parties during the
execution of TRANSMIT(M,a, b), then by Lemma 5.2 either b learns M or b detects that Ti is Byzantine
for some i ∈ {0, 1}, in which case b accepts the message arrived on Pi. Since in both cases b learns M ,
we only need to show that the probability that the adversary has authenticated at least one message that
was accepted by the honest parties during the execution of TRANSMIT(M,a, b) is at most ε. The number
of times that an authentication key is used, taken as the maximal over all of the authentication keys, is at

most ` = 2n3 ·
(

2n
t

)2t
. Hence, For every authentication edge 〈u, v〉 that participates in the execution of

SEND(M,P), there are at most ` transmissions between u and v, and for each of these, the probability that
one of the parties accepted a message that was not sent by the other is at most ε

`·n2 . Since there are at most n2

such edges, and since there are at most ` transmissions on each such edge, the probability that the adversary
has authenticated at least one message that was accepted by the honest parties, is at most ` ·n2 · ε

`·n2 = ε.

21

6 Reliable Communication

In this section we employ a transformation from [1] that uses Protocol Transmit to achieve (t, ε)-reliable
communication. We show that (t, ε)-reliable communication is efficient whenever t is constant. By [1], this
result also translates to private communication.

The next theorem proves that there is a protocol for (t, ε)-reliable communication from a to b if authen-
tication edges that participate in its execution use an (`, ε/(

(n
t

)

· ` · n2))-authentication scheme, for ` =

2n3 ·
(

2n
t

)2t
. By [16], this could be achieved if authentication keys of length

(n
t

)

·O(`(n+log 1
ε
)+log |M |)

are used.

Theorem 6.1 If (T0, T1) is not an (a, b) confusing pair for every T0, T1 ⊆ V \ {a, b} of size t, then for
every ε > 0 there is a protocol for (t, ε)-reliable communication from a to b with round complexity at most

2n3 ·
(

2n
t

)2t
≤ 2O(n), provided that authentication edges that participate in the execution of the protocol

use an (`, ε/(
(n

t

)

· ` · n2))-authentication scheme, where ` = 2n3 ·
(

2n
t

)2t
.

Proof: To achieve (t, ε)-reliable communication from a to b we follow the transformation from [1]: For
every T0, T1 ⊆ V \ {a, b} of size t, we execute Protocol TRANSMIT(M,a, b), assuming that one of T0, T1

contains all Byzantine processors. We execute these
(n

t

)2 executions in parallel and by Theorem 5.3 the

round complexity of this protocol is at most 2n3 ·
(

2n
t

)2t
≤ 2O(n) rounds.

Notice that the precondition that one of T0, T1 contains all Byzantine processors may not hold in some
of the

(n
t

)2 executions. However, there is a set T of size t that contains all Byzantine processors, and if for
every T1 ⊆ V \ {a, b} of size t, the adversary has not authenticated any message that was accepted by the
honest parties during the execution of TRANSMIT(M,a, b) for (T, T1), then by Lemma 5.2 in each of these
(n

t

)

executions b accepts M . Hence, b chooses a set T ′ such that for every T1 ⊆ V \ {a, b} of size t it holds
that b accepts the message M ′ in the execution of TRANSMIT(M,a, b) for (T ′, T1). The receiver b accepts
M ′ as the message sent by a. In particular, b accepts M ′ in the execution of Protocol TRANSMIT(M,a, b)
for the pair T ′, T . Since b accepts M in the execution of Protocol TRANSMIT(M,a, b) for the pair T, T ′

then it must be that M = M ′, and we conclude that b accepts the message M sent by a.
We only need to show that the probability that the adversary has authenticated at least one message that

was accepted by the honest parties during the above
(n

t

)

executions of TRANSMIT(M,a, b) is at most ε.
Since new authentication keys are selected for every execution of Protocol TRANSMIT, the number of times
that an authentication key is used, taken as the maximal over all of the authentication keys in all of the

(n
t

)

executions is at most ` = 2n3 ·
(

2n
t

)2t
. Hence, For every authentication edge 〈u, v〉 that participates in

an execution of TRANSMIT(M,a, b), there are at most ` transmissions between u and v, and for each of
these, the probability that one of the parties accepted a message that was not sent by the other is at most
ε/(

(n
t

)

· ` · n2). Since there are at most n2 such edges, and since there are at most ` transmissions on each
such edge, the probability that the adversary has authenticated at least one message that was accepted by the
honest parties in at least one of the

(n
t

)

executions is at most
(n

t

)

· ` · n2 · ε/(
(n

t

)

· ` · n2).

The next corollary proves that the protocol presented in Theorem 6.1 has polynomial round complexity
and polynomial message complexity if t is constant.

Corollary 6.2 For every constant t, if (T0, T1) is not an (a, b) confusing pair for all T0, T1 ⊆ V \ {a, b} of
size t, then for every ε > 0 there is a protocol for (t,ε)-reliable communication from a to b with polynomial
round and message complexity, provided that authentication edges that participates in the execution of the

protocol use an (`, ε/(
(n

t

)

· ` · n2))-authentication scheme, where ` = 2n3 ·
(

2n
t

)2t
.

22

Proof: If t is constant, the protocol described in Theorem 6.1 achieves (t,ε)-reliable communication in poly-
nomial round complexity. This protocol executes, in parallel,

(n
t

)2
< nO(t) copies of Protocol TRANSMIT.

Since in every round of each execution of Protocol TRANSMIT there are at most n2 parallel executions of
Protocol SEND (also called alert transmissions), then at any round of the (t, ε)-reliable protocol there are at
most n2 · nO(t) messages in transit. Therefore, it remains to show that the length of any of these messages
is polynomial.

We show that for every w ∈ V with a honest path P from w to b, the length of any message sent during
the execution of SEND(M,P) is at most O(|M | + n2 log(1

ε
)). Note that in any round of Protocol SEND,

there is at most one message in transit, which is propagated on edges in G∗. If u propagates the message to v
and 〈u, v〉 ∈ GC , the message does not increase in length. However, if 〈u, v〉 is an authentication edge then
an authentication tag is attached to the message before it is sent to v on PATH(u, v). Moreover, it is possible
that the authenticated message will be authenticated again, this time by an authentication edge 〈u ′, v′〉 on
PATH(u, v). However, since level(PATH(u, v)) < level(〈u, v〉) and since the level of an edge can be at most
n this process can repeat itself at most n times before the outermost authentication tag is removed.

By [16], the tag produced by an (`, ε′)-authentication scheme on a message of length s has length
O(log(1

ε′
)), which implies that the authenticated message has length at most s+ O(log(1

ε′
)). Repeating this

process n times yields an authenticated message of length at most s + n · O(log(1
ε′

)). Since messages sent
by Protocol SEND(M,P) has length either O(log n) in the case of alert call or |M |, then the length of any
message sent during the execution of SEND(M,P) is at most O(|M |+ log(n) + n · log(1

ε′
)).

Since our (t, ε)-reliable protocol uses an (`, ε/(
(n

t

)

· ` · n2))-authentication scheme, then the length of
any message sent during the execution of SEND(M,P) is at most O(|M |+ n · log(

(n
t

)

· ` · n2/ε)). Finally,
since

(n
t

)

, ` ≤ 2O(n) then log(
(n

t

)

· ` · n2) = O(n) which implies that the length of any message sent during
the execution of the (t, ε)-reliable protocol is at most O(|M |+ n2 · log(1

ε
)), as required.

6.1 Privacy from Reliability

A protocol for private transmission from a to b was offered in [1], under the assumption that communication
channels are reliable and private. That is, if 〈u, v〉 is a communication edge and both u and v are honest
parties, then the adversary cannot change or delete a message sent from u to v, neither can it insert a
message on the channel or learn anything about the message being sent. It was proved in [1] that private
communication from a to b is possible if and only if reliable communication is possible both from a to b and
from b to a. Since the protocol of [1] for private communication executes Protocol TRANSMIT twice, then
efficient reliable communication from a to b implies efficient private communication from a to b.

Theorem 6.3 If t-reliable communication is possible both from a to b and from b to a, then there is a

t-private protocol from a to b with round complexity at most n3 ·
(

2n
t

)2t
≤ 2O(n) rounds.

In addition, if private communication from a to b is possible, then a can use the protocol of [1] for private
communication to privately transmit a key to b. Once a and b share this secret key, private communication
between a and b is both simple and efficient.

7 Is Reliable Communication Symmetric?

In this section we give a simple characterization of reliable communication in the presence of one Byzantine
processor and show that (1, ε)-reliable communication is symmetric. Furthermore, we show that these
results do not apply for t ≥ 2.

23

7.1 Characterizing Reliable Communication with One Byzantine Party

In this section, we consider (1, ε)-reliable communication. We prove that a simple necessary condition for
(1, ε)-reliable communication is basically that the communication graph GC is (2, a, b)-connected, and that
G = GC ∪GA is (3, a, b)-connected.

Lemma 7.1 Let GC be a (2, a, b)-connected communication graph. If GC is connected and G = GC ∪GA

is (3, a, b)-connected, then for every t0, t1 ∈ V \ {a, b} the pair ({t0} , {t1}) is not an (a,b) confusing pair.

Proof: Fix any t0, t1 ∈ V \ {a, b}. If there is a path in GC that misses {t0, t1}, then by Property (1) of
Definition 2.8 the pair ({t0} , {t1}) is not an (a, b) confusing pair. Otherwise, every path from a to b in GC

has a Byzantine vertex, t0 or t1, on it. Since GC is (2, a, b)-connected, there are two disjoint paths from a
to b in GC , and there must be exactly one Byzantine vertex on each of these paths. Hence, there is a path
Pt0 ,b from t0 to b that misses t1 and there is a path Pt1,b from t1 to b that misses t0. Also, GC is connected
and for every u ∈ V there is a path Pu,b from u to b. If Pu,b is not honest, then there is i ∈ {0, 1} such that
the prefix 〈u, . . . , ti〉 of Pu,b misses ti, and 〈u, . . . , ti〉, Pti ,b is a semi-honest path from u to b. We conclude
that for every u ∈ V there is a semi-honest path Pu,b from u to b.

Since G is (3, a, b)-connected, there is a path P from a to b in G that misses {t0, t1}. We will prove
that P is also a path in G∗, which implies by Definition 2.8 that ({t0} , {t1}) is not an (a, b) confusing pair.
Assume towards contradiction that P is not in G∗. Hence, there is an authentication edge e = 〈u, v〉 and a
honest path P ′, such that 〈u, v〉, P ′ is a suffix of P , the edge e is not in E∗, and P ′ is in E∗.

We next check the conditions when e ∈ E∗ in Definition 2.6 of G∗. Since P misses {t0, t1}, then
u, v /∈ {t0, t1} and Property (1) holds. Since there is a semi-honest path Pu,b from u to b, then the path
Pu,b, P

′ is a semi-honest path from u to v and therefore Property (2) holds. Finally, the path P ′ is a honest
path from v to b and Property (3) holds. Hence, e ∈ E∗, contradiction. Thus, P is in G∗ and ({t0} , {t1}) is
not an (a, b) confusing pair in G.

Theorem 7.2 Let V ′ be the connected component of b in GC , let E′

A (respectively, E ′

C) be the set of authen-
tication (respectively, communication) edges that connect vertices in V ′, and define G′ = 〈V ′, E′

C ∪ E′

A〉.
Then, (1,ε)-reliable communication from a to b is possible for every ε > 0 if and only if GC is (2, a, b)-
connected and G′ is (3, a, b)-connected.

Proof: By Lemma 7.1, the pair (T0, T1) is not an (a, b) confusing pair for all T0, T1 ⊆ V \ {a, b} of size at
most 1. Therefore, by Theorem 2.10, there is a (1, ε)-reliable protocol from a to b for every ε > 0.

On the other hand, if the conditions that GC is (2, a, b)-connected and G′ is (3, a, b)-connected do not
hold, then there is a confusing pair in G′, which implies by Theorem 2.10 that (t, ε)-reliable communication
is not possible for every ε < 1

2 .

Since the conditions of Theorem 7.2 are symmetric with respect to a and b we get that reliable commu-
nication is symmetric for t = 1.

Corollary 7.3 (1, ε)-reliable communication from a to b is possible for every ε > 0 if and only if (1, ε)-
reliable communication from b to a is possible for every ε > 0.

7.2 Reliable Communication is Not Symmetric for t ≥ 2

In this section we show that the simple characterization for the case t = 1 could not be applied to the case
t ≥ 2. Moreover, we show that if t ≥ 2 then (t, ε)-reliable communication for every ε > 0 is not symmetric.

24

b

a

Graph3

v1v3 v2w

Vertex in T0

Vertex in T1

Authentication Edge

Figure 9: Confusing pairs for t = 2.

Lemma 7.4 For every t ≥ 2 there is a connected communication graph GC and an authentication graph
GA such that GC is (t + 1, a, b)-connected and G = GC ∪GA is (2t + 1, a, b)-connected, however (t, ε)-
reliable communication from a to b is impossible with ε < 1

2 .

Proof: For t = 2, consider Graph3 and the Byzantine sets described in Figure 9. There is no semi-honest
path from u to v, for every authentication edge 〈u, v〉. By Property (2) of Definition 2.6, the graph Graph3∗

does not contain any authentication edges. Since Graph3∗ is the communication graph Graph3, and since
there is no honest path from a to b in Graph3∗, by Definition 2.8 of a confusing pair, the pair (T0, T1) is an
(a, b) confusing pair in Graph3∗, which implies that (2, ε)-reliable communication from a to b in Graph3 is
impossible with ε < 1

2 . For t > 2 consider the graph described in Figure 10. In this graph the communication
graph is (2t − 1, b, a)-connected and the union of the communication graph with the authentication graph
is (2t + 1, b, a)-connected. Yet, we prove in Theorem 7.5 that (t, ε)-reliable communication from b to a is
impossible with ε < 1

2 .

Beimel and Franklin [1] showed an example where fault restricted reliable communication is possible
from a to b, but is impossible from b to a. However, in their example (t, ε)-reliable communication for every
ε > 0 is impossible in both directions. We present a stronger example in which (t, ε)-reliable communication
from a to b is possible for every ε > 0, but impossible from b to a with ε < 1

2 .

b

a

u2

u3u4

P2

u1

P1

v1 v2 v2t
. . .v3

Figure 10: The graph G in which reliable communication is possible from a to b, but not from b to a.

25

Theorem 7.5 For every t ≥ 2 there is a communication graph GC and an authentication graph GA such
that (t, ε)-reliable communication from a to b in G = GC ∪ GA is possible for every ε > 0 and reliable
communication from b to a is impossible with ε < 1

2 .

Proof: Consider the graph G described in Figure 10 with V = {a, b, u1, . . . , u4, v1, . . . , v2t}, P1
def
=

〈a, u4, u3, b〉, and P2
def
= 〈a, u2, u1, b〉.4 We first show that (T0, T1) is not an (a, b) confusing pair in G

for all T0, T1 ⊆ V \ {a, b} of size t. Fix any T0, T1 ⊆ V \ {a, b} with size t, and let GC be the communica-
tion graph of G. If there is a Byzantine free path from a to b in GC , then there is a honest path from a to b in
G∗, which implies that (T0, T1) is not an (a, b) confusing pair. Otherwise, the vertices v2, . . . , v2t ∈ T0∪T1

and there are two cases:

1. v2 ∈ T0 ∩ T1: Since |T0| + |T1| = 2t and v2 ∈ T0 ∩ T1 then |T0 ∪ T1| ≤ 2t − 1. Since v2, . . . , v2t

are 2t − 1 Byzantine vertices then no other vertices, namely u1, u2, u3, u4, v1, are Byzantine and
v3 /∈ T0 ∩T1 (otherwise, |T0 ∪T1| ≤ 2t− 2). Thus, the path 〈u3, v1, v3, b〉 is a semi-honest path from
u3 to b in G0, and 〈u3, b〉 ∈ E1. Furthermore, the path 〈u4, v1, u3〉 is a semi-honest path from u4 to
u3 in G1 and there is a honest path 〈u3, b〉 from u3 to b in G1, and 〈u4, u3〉 ∈ E2. Finally, the path
〈u4, u3, b, v3, a〉 is a semi-honest path from u4 to a in G2 and there is a honest path 〈u4, u3, b〉 from
u4 to b in G2, and 〈u4, a〉 ∈ E3. Therefore, P1 is a honest path from a to b in G∗, and (T0, T1) is not
an (a, b) confusing pair.

2. v2 /∈ T0 ∩ T1: Since |T0 ∪ T1| ≤ 2t and v2, . . . , v2t are Byzantine then at most one of the vertices
u1, u2, u3, u4, v1 is Byzantine. Hence, either P1 or P2 is Byzantine free. Assume, w.l.o.g, that P1

is Byzantine free. Since v2 /∈ T0 ∩ T1 then 〈u3, v2, b〉 is a semi-honest path from u3 to b in GC ,
and 〈u3, b〉 ∈ E1. Since v1 /∈ T0 ∩ T1 (otherwise, |T0 ∪ T1| ≤ 2t − 1, contradicting the fact that
v1, . . . , v2t are 2t Byzantine vertices), the path 〈u4, v1, u3〉 is a semi-honest path from u4 to u3. Also,
there is a honest path 〈u3, b〉 from u3 to b in G2, and therefore 〈u4, u3〉 ∈ E2. Finally, in G2 the path
〈u4, u3, b, v2, a〉 is a semi-honest path from u4 to a and there is a honest path 〈u4, u3, b〉 from u4 to b,
which implies that 〈u4, a〉 ∈ E3. Hence, P1 is a honest path from a to b in G∗, and therefore (T0, T1)
is not an (a, b) confusing pair.

We conclude that for every T0, T1 ⊆ V \ {a, b} of size t there is a honest path from a to b in G∗, which
implies by Theorem 2.10 that (t, ε)-reliable communication from a to b is possible for every ε > 0.

We now show that (t, ε)-reliable communication from b to a is impossible with ε < 1
2 . Fix T0 =

{v1, vt+2, . . . , v2t} and T1 = {v2, v3, . . . , vt+1}. We prove that (T0, T1) is a confusing pair in G∗ with
respect to (b, a) by showing that no authentication edges are added to G∗. First, consider the edge 〈u4, a〉.
Any path from a to u4 in GC passes through v1 ∈ T0 and through either v2 or v3, both in T1. Thus, there is
no semi-honest path from u4 to a in G0 and 〈a, u4〉 /∈ E1. Symmetric arguments imply that 〈a, u2〉 /∈ E1.
Moreover, any other authentication edge is not added to E1 since there is no honest path from any of its
endpoints to a. To conclude, there is no honest path from b to a in G∗, and (T0, T1) is a (b, a) confusing
pair in G∗, which, by Theorem 2.10, implies that (t, ε)-reliable communication from b to a is impossible for
every ε < 1

2 .

This asymmetry result is somewhat surprising because both communication and authentication edges
are symmetric. The asymmetry stems from the topology of G, which can be asymmetric with respect to a
and b. Recall that constructing G∗ from a to b requires honest paths to b, while constructing G∗ from b to a
requires honest paths to a. These requirements are asymmetric, and the resulting G∗ from a to b is different
than the resulting G∗ from b to a.

4The edge 〈v1, v3〉 was missing in the preliminary version [2] of this paper, and the proof in [2] is incorrect.

26

References

[1] A. Beimel and M. Franklin. Reliable communication over partially authenticated networks. Theoretical
Computer Science, 220:185–210, 1999.

[2] A. Beimel and L. Malka. Efficient reliable communication over partially authenticated networks. In
Proc. of the 22nd annu. ACM symp. on Principles of Distributed Computing, pages 233–242, 2003.

[3] M. Bläser, A. Jakoby, M. Liśkiewicz, and B. Manthey. Private computation - k-connected versus 1-
connected networks. In Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in
Computer Science, pages 194–209. Springer, 2002.

[4] J. Carter and M. Wegman. Universal classes of hash functions. J. of Computer and System Sciences,
18:143–154, 1979.

[5] Y. Desmedt and Y. Wang. Secure communication in multicast channels: The answer to Franklin and
Wright’s question. J. of Cryptology, 14(2):121–135, 2001.

[6] Y. Desmedt and Y. Wang. Perfectly secure message transmission revisited. In L. Knudsen, editor,
Advances in Cryptology – EUROCRYPT 2002, Lecture Notes in Computer Science, pages 502–517.
Springer-Verlag, 2002.

[7] D. Dolev. The Byzantine generals strike again. J. of Algorithms, 3:14–30, 1982.

[8] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission. J. of the ACM,
40(1):17–47, 1993.

[9] C. Dwork, D. Peleg, N. Pippenger, and E. Upfal. Fault tolerance in networks of bounded degree. SIAM
J. on Computing, 17(5):975–988, 1988.

[10] S. Even. Graph Algorithms. Computer Science press, 1979.

[11] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for distributed consensus prob-
lems. Distributed Computing, 1(1):26–39, 1986.

[12] M. Franklin and R. N. Wright. Secure communication in minimal connectivity models. J. of Cryptol-
ogy, 13(1):9–30, 2000.

[13] M. Franklin and M. Yung. Secure hypergraphs: privacy from partial broadcast. In Proc. of the 25th
Annu. ACM Symp. on the Theory of Computing, pages 36–44, 1993.

[14] O. Goldreich, S. Goldwasser, and N. Linial. Fault-tolerant computation in the full information model.
In Proc. of the 32nd Annu. IEEE Symp. on Foundations of Computer Science, pages 447–457, 1991.

[15] H. Krawczyk. LFSR-based hashing and authentication. In Y. G. Desmedt, editor, Advances in Cryp-
tology – CRYPTO ’94, volume 839 of Lecture Notes in Computer Science, pages 129–139. Springer-
Verlag, 1994.

[16] H. Krawczyk. New hash functions for message authentication. In L. C. Guillou and J.-J. Quisquater,
editors, Advances in Cryptology – EUROCRYPT ’95, volume 921 of Lecture Notes in Computer Sci-
ence, pages 301–310. Springer, 1995.

27

[17] M. V. N. A. Kumar, P. R. Goundan, K. Srinathan, and C. P. Rangan. On perfectly secure communication
over arbitrary networks. In Proc. of the 21st annu. ACM symp. on Principles of Distributed Computing,
pages 193–202, 2002.

[18] N. A. Lynch. Distributed Algorithms. Morgan Kaufman Publishers, 1997.

[19] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority. In
Proc. of the 21st Annu. ACM Symp. on the Theory of Computing, pages 73–85, 1989.

[20] H. M. Sayeed and H. Abu-Amara. Efficient perfectly secure message transmission in synchronous
networks. Information and Computation, 126:53–61, 1996.

[21] H. M. Sayeed, M. Abu-Amara, and H. Abu-Amara. Optimal asynchronous agreement and leader elec-
tion algorithm for complete networks with byzantine faulty links. Distributed Computing, 9(3):147–
156, 1995.

[22] G. J. Simmons. A survey of information authentication. In G. J. Simmons, editor, Contemporary
Cryptology, The Science of Information Integrity, pages 441–497. IEEE Press, 1992.

[23] K. Srinathan, V. Vinod, and C. Pandu Rangan. Efficient perfectly secure communication over syn-
chronous networks. In Proc. of the 22nd annu. ACM symp. on Principles of Distributed Computing,
pages 252–252, 2003.

[24] E. Upfal. Tolerating a linear number of faults in networks of bounded degree. Information and Com-
putation, 115(2):312–320, 1994.

[25] M. Wegman and J. Carter. New hash functions and their use in authentication and set equality. J. of
Computer and System Sciences, 22:265–279, 1981.

28

